Journal of East China Normal University(Natural Science) >
Research on improved BP neural network in forecasting traffic accidents
Received date: 2016-03-08
Online published: 2017-03-23
The traffic accident severity is affected by many factors. It is suitable for modeling and forecasting by using the artificial neural network (ANN). Because standard BP(back propagation) neural network has the defect of slow convergence, based on the improved BP neural network with adaptive learning and additional momentum factor[1], so the additional momentum factor was made to be self-learning for further optimization and improvement. Using the improved BP neural network algorithm, the public traffic accident data set in Leeds of England was selected to construct and train the neural network to predict the latest records. The data set includes many kinds of influencing factors and accident severity. After a lot of experiments, by comparing the convergence rate and prediction results, it has been proved that the improved algorithm has faster convergence rate and higher forecasting accuracy rate.
Key words: BP neural network; momentum factor; self-learning; traffic accident
CHEN Hai-long , PENG Wei . Research on improved BP neural network in forecasting traffic accidents[J]. Journal of East China Normal University(Natural Science), 2017 , 2017(2) : 61 -68 . DOI: 10.3969/j.issn.1000-5641.2017.02.008
[1] ZHU P, LIN C Y, WU P, et al. Permeability prediction of tight sandstone reservoirs using improved BP neural network[J]. The Open Petroleum Engineering Journal, 2015, 8(1):288-292.
[2] ZONG F, XU H G, ZHANG H Y. Prediction for traffic accident severity:Comparing the Bayesian network and regression models[J]. Mathematical Problems in Engineering, 2013(3):206-226.
[3] 李铃铃, 仇蕾. 基于灰色神经网络组合模型的水上交通事故预测[J]. 交通信息安全, 2014, 32(3):110-118.
[4] 唐秋生, 杜营营. 基于BP神经网络的交通事故预测模型及仿真[J]. 交通信息安全, 2011, 29(1):68-70.
[5] ABELLÁN J, LÓPEZ G, OÑA J D. Analysis of traffic accident severity using decision rules via decision trees[J]. Expert Systems with Applications, 2013, 40(15):6047-6054.
[6] 赵玲, 许宏科. 基于改进的灰色马尔可夫链模型的交通事故预测[J]. 数学的实践与认识, 2013, 43(20):92-98.
[7] 邢晓敏, 商国敬. 基于改进共轭梯度理论神经网络优化算法研究[J]. 电器与仪表, 2014, 51(19):36-40.
[8] 张峤, 邓贵仕. Levenberg-Marquardt神经网络在煤矿作业人员人因可靠性评价中应用研究[J]. 大连理工大学学报, 2015, 55(4):424-430.
[9] 焦纲领, 王士星. 基于遗传算法的神经网络参数优化研究[J]. 数学的实践与认识, 2012, 42(11):176-183.
[10] 刘春艳, 凌建春, 寇林元, 等. GA-BP神经网络与BP神经网络性能比较[J]. 中国卫生统计, 2013, 30(2):173-181.
[11] 高玉明, 张仁津. 基于遗传算法和BP神经网络的房价预测分析[J]. 计算机工程, 2014, 40(4):187-191.
[12] 许榕, 周东, 蒋士正, 等. 自适应粒子群神经网络交通流预测模型[J]. 西安交通大学学报, 2015, 49(10):103-109.
[13] 张德慧, 张德育, 刘清云, 等. 基于粒子群算法的BP神经网络优化技术[J]. 计算机工程与设计, 2015, 36(5):1321-1326.
[14] 江丽, 王爱平. 基于粒子群优化与BP算法的协同神经网络学习方法[J]. 计算机应用与软件, 2013, 30(9):19-20.
[15] 刘卫宁, 王鹏, 孙棣华, 等. 基于改进BP神经网络的道路交通事故预测[J]. 计算机系统应用, 2010, 19(10):177-181.
/
〈 |
|
〉 |