Learning distance metrics with dimension constraints

  • FANG Juan ,
  • LIU Hong-ying ,
  • LI Qing-li
Expand
  • School of Information Technology, Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China

Received date: 2015-07-08

  Online published: 2017-03-23

Abstract

In order to improve the classification accuracy, the new representation of samples can be gotten by distance metric learning. According to mahalanobis distance does not take the difference of the relativity between different classes of sample dimensions into consideration. A new supervised distance metric learning algorithm called independent discrimi-native component analysis(I-DCA) is proposed and applied to classify the motor and sensory nerve based on k nearest neighbor (kNN) algorithm. By contrast, the article also involves the analysis of two existing distance metric learning algorithms in detail, the relevant component analysis (RCA) and the discrimi-native component analysis(DCA). Compared with the mahalanobis distance, the results indicate that the classification precision of the improved algorithm increases by nearly 45%, and it is also greater than 15% compared to the RCA and DCA method. The improved classification precision shows the effectiveness of the new algorithm applied in nerve classification.

Cite this article

FANG Juan , LIU Hong-ying , LI Qing-li . Learning distance metrics with dimension constraints[J]. Journal of East China Normal University(Natural Science), 2017 , 2017(2) : 69 -74,88 . DOI: 10.3969/j.issn.1000-5641.2017.02.009

References

[1] 徐沁同. 应用拉曼光谱和超光谱成像技术识别周围神经纤维及神经束功能性质和显微结构的研究[D]. 上海:复旦大学, 2013.
[2] 房娟, 刘洪英, 陈增淦, 等. 基于显微高光谱成像技术的运动和感觉神经分类研究 [J]. 影像科学与光化学, 2015, 33(3):203-210.
[3] 刘洪英, 李庆利, 顾彬, 等. 新型分子高光谱成像系统性能分析及数据预处理 [J]. 光谱学与光谱分析, 2012, 32(11):3161-3166.
[4] 刘博. 距离测度学习理论与应用研究 [D]. 合肥:中国科学技术大学, 2009.
[5] BAR-HILLEL A, HERTZ T, SHENTAl N, et al. Learning distance function using equivalence relations[C]//Machine Learning, Proceedings of the Twentieth International Conference. 2003:11-18.
[6] GOLDBERGER J, ROWEIS S T, HINTON G E, et al. Neighbourhood components analysis.[J]. Advances in Neural Information Processing Systems, 2004, 83(6):513-520.
[7] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning, with application to clustering with sideinformation[J]. Advances in Neural Information Processing Systems, 2003, 15:505-512.
[8] HOI S C H, LIU W, LYU M R, et al. Learning distance metrics with contextual constraints for image retrieval[C]//IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society, 2006:2072-2078.
[9] 苟建平. 模式分类的k近邻方法 [D]. 成都:电子科技大学, 2012.
[10] 张巍. 基于k近邻分类准则的特征变换算法研究 [D]. 上海:复旦大学, 2007.
[11] 张杰. 基于距离测度学习的图像分类方法研究 [D]. 上海:复旦大学, 2010.
[12] 刘洪英. 分子超光谱成像的生物组织定量检测与方法研究 [D]. 上海:华东师范大学, 2011.

Outlines

/