Studies of seasonal variation on genetic toxicity of typical fine particulate matter samples in Shanghai

  • ZHANG Ying ,
  • YANG Jing ,
  • CHEN Xiao-qian ,
  • YANG He-xing ,
  • YIN Hao-wen
Expand
  • Shanghai Academy of Public Measurement, Shanghai 201203, China

Received date: 2017-05-31

  Online published: 2018-03-22

Abstract

To explore the genetic toxicity on different components of PM2.5 in Huinan and Pudong during winter and summer, the SOS chromotest is used to detect the genetic toxicity of the total particulate, the organic extract and the water-soluble component. Results shows that tests of the genetic toxicity on the total particulate in Huinan are positive at the highest concentration of 2 mg·mL-1 both in winter and summer, also are positive in Pudong respectively at the concentration of 1 mg·mL-1 in winter and at the highest concentration of 2 mg·mL-1 in summer. Tests of the genetic toxicity at two stations both in winter and summer on the water-soluble component are positive at the highest concentration of 2 mg·mL-1and negative on the the organic extract in the range of 0.000 2 mg·mL-1and 2 mg·mL-1. To further compare the genetic toxicity of the PM2.5 in Huinan and Pudong during winter and summer when exposed to the same volume air, the genetic toxicity of the different components are expressed as the content of the 4-nitroquinoline oxide (4-NQO) per cubic meter of air. Results indicat that the genetic toxicity of the fine particulate matter in Shanghai Puding and Huinan is seasonal and higher in summer than in winter. Furthermore the genotoxic component and the concentration of the total particulate and the water-soluble during winter and summer may be different. It, combined with the result of existing studies that pollutants concentration or components of fine particulate matter were generally higher in winter than in summer at multiple sites in Shanghai, is speculated that the genetic toxicity of atmospheric particulates in every part of Shanghai has similar seasonal change rule. The genotoxic effect of the organic extract is not significant. The main source of the genetic toxicity in the fine particulate matter may be the water-soluble component. The atmospheric pollution at Pudong stationwas continuously serious and equivalent to Huinan stationon the pollution level and the genetic toxicity in same seasons. It is speculated that the genotoxic chemical compositions of atmospheric particulate matter at Pudong station and Huinan station are similar.

Cite this article

ZHANG Ying , YANG Jing , CHEN Xiao-qian , YANG He-xing , YIN Hao-wen . Studies of seasonal variation on genetic toxicity of typical fine particulate matter samples in Shanghai[J]. Journal of East China Normal University(Natural Science), 2018 , 2018(2) : 131 -140 . DOI: 10.3969/j.issn.1000-5641.2018.02.014

References

[1] LEMOS A T, CORONAS M V, ROCHA J A, et al. Mutagenicity of particulate matter fractions in areas under the impact of urban and industrial activities[J]. Chemosphere, 2012, 89(9):1126-1134.
[2] BORGIE M, LEDOUXF, VERDIN A, et al. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells[J]. Environmental Research, 2015, 136:352-362.
[3] 刘雪亚, 王平, 李杰, 等. 大气细颗粒物不同成分对A549细胞遗传毒性的影响[J]. 郑州大学学报医学版, 2016, 51(4):482-486.
[4] 周秋花. 大气细颗粒物在模拟肺液中的行为、对细胞膜的作用及其细胞毒性[D]. 济南:山东大学, 2016.
[5] 刀谞, 张霖琳, 王超, 等. 大同市大气颗粒物浓度与水溶性离子季度分布特征[J]. 中国环境监测, 2015, 31(3):43-51.
[6] 韩月梅, 沈振兴, 曹军骥, 等. 西安市大气颗粒物中水溶性无机离子的季节变化特征[J]. 环境化学, 2009, 28(2):261-266.
[7] 樊晓燕, 温天雪, 徐仲均, 等. 北京大气颗粒物碳质组分粒径分布的季节变化特征[J]. 环境化学, 2013(5):742-747.
[8] 崔亚雄, 武瑞琴, 苑晓燕, 等. 汉口、汉阳两地空气细颗粒物PM2.5遗传毒性研究[J]. 生物技术通讯, 2013(6):833-835.
[9] 何俊, 赵增明, 赵君, 等. 汉阳PM2.5对人胚胎干细胞来源的成纤维细胞的遗传毒性研究[J]. 毒理学杂志, 2015(6):436-439.
[10] 范兰兰. 城市大气颗粒物对肺细胞和血管内皮细胞的毒性作用及机制的初步研究[D]. 上海:上海大学, 2013.
[11] 覃辉艳. 大气污染颗粒物PM2.5诱导人支气管上皮细胞凋亡及其机制探讨[D]. 南宁:广西医科大学, 2012.[12 DE BRITO K C, DE LEMOS C T, ROCHA J A, et al. Comparative genotoxicity of airborne particulate matter(PM2.5) using Salmonella, plants and mammalian cells[J]. Ecotoxicology & Environmental Safety, 2013, 94(1):14-20.
[13] PALACIO I C, OLIVEIRA I F, FRANKLIN R L, et al. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter:A comparison of two extraction strategies[J]. Chemosphere, 2016, 158:124-130.
[14] NOVÁK J, HILSCHEROVÁ K, LANDLOVÁL, et al. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part Ⅱ. In vitro biological potencies[J]. Environment International, 2014, 63(3):64-70.
[15] 印木泉. SOS试验规范化的几个问题[J]. 癌变. 畸变:突变, 1989(1):58-59.
[16] 梅卓华, 方东. SOS显色法测定水体中遗传毒性[J]. 环境监测管理与技术, 1997(3):17-18.
[17] 唐非, 谷康定, 刘红艳, 等. SOS显色试验快速检测饮用水中有机物的生物遗传毒性[J]. 中国给水排水, 1999, 15(11):20-23.
[18] 崔金山, 张黎. 应用SOS显色试验监测工业废水的遗传毒性[J]. 环境与健康杂志, 1992(5):205-208.
[19] NYLUND L, HAKALA E, SORSA M. Application of a semi-automated SOS chromotest for measuring genotoxicities of complex environmental mixtures containing polycyclic aromatic hydrocarbons[J]. Mutation Research/fundamental & Molecular Mechanisms of Mutagenesis, 1992, 276(1-2):125-132.
[20] KOVÁTS N, ACS A, FERINCZ A, et al. Ecotoxicity and genotoxicity assessment of exhaust particulates from diesel-powered buses[J]. Environmental Monitoring & Assessment, 2013, 185(10):8707-8713.
[21] 潘丽波, 邹天森, 张金良. 微核试验和SOS/umu试验在水环境遗传毒性检测中应用的研究进展[J]. 环境与健康杂志, 2013, 30(6):95-98.
[22] 曹新垲, 王晓羽, 孔祥虎, 等. SOS/umu生物测试在饮用水评价中的应用[J]. 城镇供水, 2014(5):53-54.
[23] ABDEL-MASSIH R M, MELKI P N, DAOUD Z, et al. Detection of genotoxicity in hospital wastewater of a developing country using SOS chromotest and Ames fluctuation test[J]. Journal of Environmental Engineering & Ecological Science, 2013, 2(4):1-8.
[24] 李莉, 周建国, 李娜, 等. 利用SOS/Umu测试评价污泥样品的遗传毒性效应以及污泥处理工艺效果[J]. 河南师范大学学报(自然版), 2013, 41(2):112-114.
[25] 禹果, 肖睿洋, 王春霞, 等. 利用umu/SOS实验评价污灌土壤的遗传毒性[J]. 环境科学, 2006, 27(6):1162-1165.
[26] 黄广寒. 上海近地面大气颗粒物的化学组成与光学特性[D]. 上海:复旦大学, 2013.
[27] 张蕴晖, 丁佳玮, 曹慎, 等. 大气细颗粒物PM2.5对心血管内皮细胞NOS的影响[J]. 环境科学学报, 2006, 26(1):142-145.
[28] 曹强, 钱孝琳, 张澍, 等. 大气细颗粒物水溶成分和非水溶成分的细胞毒性[J]. 环境科学学报, 2008, 28(6):1167-1172.
[29] VARGAS V M F, HORN R C, GUIDOBONO R R, et al. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre[J]. Genetics & Molecular Biology, 1998, 21(2):247-253.
[30] 杨玫, 胡燕平, 黄念君. 一种改良的DNA损伤检测技术——SOS微量显色法[J]. 癌变·畸变·突变, 1992, 4(6):51-56.
[31] QUILLARDET P, HUISMAN O, D'ARI R, et al. SOS-CHROMOTEST, a direct assay for induction of an SOS function in Escherichia coli-K-12 to measure genotoxicity.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(19):5971-5975.
[32] CUÉARA EB, ÁLVAREZ A, ALONSO A, et al. A microanalytical variant of the SOS Chromotest for genotoxicological evaluation of natural and synthetic products[J]. Biotecnologia Aplicada, 2012, 29(2):108-112.
[33] 朱舟, 顾炜旻, 安伟, 等. 基于umu遗传毒性效应的饮用水致癌风险评价的尝试[J]. 生态毒理学报, 2008, 3(4):363-369.
[34] 柳清, 张丽萍, 刘文君, 等. umu试验研究饮用水氯和氯胺消毒过程中遗传毒性的变化以及消毒条件的影响[J]. 环境科学, 2010, 31(1):93-98.
[35] 吕森林, 陈小慧, 吴明红, 等. 上海市PM2.5的物理化学特征及其生物活性研究[J]. 环境科学, 2007, 28(3):472-477.
[36] 徐海娟. 广州大气颗粒物不同组分遗传毒性初步研究[D]. 广州:中国科学院研究生院(广州地球化学研究所), 2007.
[37] 赵贤四, 朱惠刚, 蒋松辉, 等. 上海市大气悬浮颗粒物有机提取组分的致突变性研究[J]. 癌变畸变突变, 1996, 8(2):78-85.
[38] 胡颖, 邵龙义, 王静, 等. 北京市PM2.5对质粒DNA氧化性损伤规律分析[C]. 中国大气环境科学与技术大会暨中国环境科学学会大气环境分会学术年会, 2012.
[39] 上海公布PM2.5的来源及构成[EB/OL]. (2015-01-08)[2017-10-17]. http://www.antpedia.com/news/48/n-1111648.html.
[40] 杨健儿. 上海市近地表大气颗粒物污染特征及来源分析研究[D]. 上海:华东师范大学, 2011.
[41] 徐昶, 庄国顺. 上海超高浓度大气细颗粒的理化特性研究[C]//全国博士生学术论坛(环境科学与工程). 北京:[出版者不详], 2009.
[42] 张元勋, 王荫淞, 李德禄, 等. 上海冬季大气可吸入颗粒物的PIXE研究[J]. 中国环境科学, 2005, 25(b06):1-5.
[43] 胡伟, 魏复盛. 部分城市空气中颗粒物的元素组成比较[J]. 上海环境科学, 2002(7):408-411.
[44] 吴昊, 王体健, 方欢, 等. 南京细颗粒物对城市热岛强度的影响[J]. 大气科学学报, 2014, 37(4):425-431.
Outlines

/