Geochemical characteristics of the peat profile in the Yangbajing basin, Tibetan, China and its paleoenvironmental implications

  • MENG Qing-hao ,
  • NIU Rui ,
  • ZHENG Xiang-min ,
  • Zhou Li-min ,
  • SUN Cheng-cheng ,
  • WANG Lin
Expand
  • School of Geographic Sciences, East China Normal University, Shanghai 200241, China

Received date: 2017-04-20

  Online published: 2018-03-22

Abstract

The peat contains abundant information about climate change.In this study, the ratios of characteristic elements in the Yangbajing basin, Tibetan Plateau, are found to be an good indicator for evaluating the regional sedimentary environment (e.g., the change of wet and dry stages), according to the analytical results of special element rations (Fe/Mn, Ba/Sr, K2O/Na2O), humification and mercury (Hg) records in the peat cores. The paleoclimate evolution in the Yangbajing basin is classified as three stages as revealed by the elemental geochemical records:Temperature fluctuates and shows an overall increasing trend between 9.1~7.6 cal ka BP. The sedimentary environment is relatively wet during this period. Significant and frequent fluctuation of temperature is observed between 7.6~4.5 cal ka BP. The sedimentary environment tends to be dry; the temperature fluctuats less and shows a decreasing upward trend 4.5~3.5 cal ka BP. The sedimentary environment tends to be warm and wet. A total of four drying events are recorded in the peat profile, which occurs at approximately 5.8, 6.1, 8.2 and 8.8~8.5 cal ka BP, respectively. The four events recorded in the peat core in the Yangbajing basin are consistent with the regional and global climate records.

Cite this article

MENG Qing-hao , NIU Rui , ZHENG Xiang-min , Zhou Li-min , SUN Cheng-cheng , WANG Lin . Geochemical characteristics of the peat profile in the Yangbajing basin, Tibetan, China and its paleoenvironmental implications[J]. Journal of East China Normal University(Natural Science), 2018 , 2018(2) : 151 -159 . DOI: 10.3969/j.issn.1000-5641.2018.02.016

References

[1] 甄治国. MIS-3a以来雷州半岛北部气候环境变化的泥炭记录[D]. 广州:华南师范大学, 2007.
[2] 马春梅, 朱诚, 郑朝贵, 等. 晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究[J]. 科学通报, 2008(s1):28-39.
[3] 高宝金. 吉林哈尼地区16000年来的环境演变研究[D]. 上海:华东师范大学, 2015.
[4] 王华, 洪业汤, 朱咏煊, 等. 红原泥炭腐殖化度记录的全新世气候变化[J]. 地球与环境, 2003, 31(2):51-56.
[5] 洪业汤, 刘东生, 姜洪波, 等. 太阳辐射驱动气候变化的泥炭氧同位素证据[J]. 中国科学:地球科学, 1999, 29(6):527-531.
[6] 洪业汤, 李汉鼎. 近5ka温度的金川泥炭δ18O记录[J]. 中国科学:地球科学, 1997(6):525-530.
[7] 徐海, 洪业汤, 林庆华, 等. 红原泥炭纤维素氧同位素指示的距今6ka温度变化[J]. 科学通报, 2002, 47(15):1181-1186.
[8] 刘冰, 靳鹤龄, 孙忠, 等. 青藏高原东北部泥炭沉积粒度与元素记录的全新世千年尺度的气候变化[J]. 冰川冻土, 2013, 35(3):609-620.
[9] 于学峰, 周卫健, 刘晓清, 等. 青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义[J]. 沉积学报, 2006, 24(6):864-869.
[10] 于学峰, 周卫健, FRANZEN L G, 等. 青藏高原东部全新世冬夏季风变化的高分辨率泥炭记录[J]. 中国科学:地球科学, 2006, 36(2):182-187.
[11] ROOS-BARRACLOUGH F, SHOTYK W. Millennial-scale records of atmospheric mercury deposition obtained from ombrotrophic and minerotrophicpeatlands in the Swiss Jura Mountains[J]. Environmental Science & Technology, 2003, 37(2):235-244.
[12] DAMMAN A W H. Distribution and movement of elements in ombrotrophic peat bogs[J]. Oikos, 1978, 30(3):480-495.
[13] WEISS D, SHOTYK W, RIELEY J, et al. The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition[J]. Geochimica Et Cosmochimica Acta, 2002, 66(13):2307-2323.
[14] 赵红艳, 王升忠, 李鸿凯. 长白山地区全新世泥炭剖面地球化学特征及其古环境意义[J]. 古地理学报, 2004, 6(3):355-362.
[15] 王国平, 刘景双, 翟正丽. 沼泽沉积剖面特征元素比值及其环境意义——盐碱化指标及气候干湿变化[J]. 地理科学, 2005, 25(3):335-339.
[16] 谢又予. 沉积地貌分析[M]. 北京:海洋出版社, 2000.
[17] 韩德亮. 莱州湾E孔中更新世末期以来的地球化学特征[J]. 海洋学报, 2001, 23(2):79-85.
[18] 黄静. 青藏高原南部与贵州草海6000年来环境演变对比[D]. 上海:华东师范大学, 2014.
[19] 孙诚诚, 周立旻, 郑祥民, 等. 青藏高原羊八井盆地全新世以来气候变化的泥炭记录[J]. 海洋地质与第四纪地质, 2016(5):149-155.
[20] 张瑞虎. 长江口沉积物记录的全新世沉积环境和东亚夏季风演变研究[D]. 上海:华东师范大学, 2011.
[21] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州:兰州大学出版社, 1997.
[22] SHOTYK W, NESBITT H W, FYFE W S. The behaviour of major and trace elements in complete vertical peat profiles from three Sphagnum, bogs[J]. International Journal of Coal Geology, 1990, 15(3):163-190.
[23] 贾琳, 王国平, 刘景双. 长白山圆池泥炭常量和微量元素分布特征及其环境意义[J]. 山地学报, 2006, 24(6):662-666.
[24] 朱立平, 王君波, 陈玲, 等. 藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J]. 地理学报, 2004, 59(4):514-524.
[25] 庞奖励, 黄春长, 张占平. 陕西五里铺黄土微量元素组成与全新世气候不稳定性研究[J]. 中国沙漠, 2001, 21(2):151-156.
[26] JONES B F, BOWSER C J. The Mineralogy and Related Chemistry of Lake Sediments[M]//LERMAN A.Lakes. New York:Springer, 1978:179-235.
[27] DAVISON W. Iron and manganese in lakes[J]. Earth-Science Reviews, 1993, 34(2):119-163.
[28] WERSIN P, HÖHENER P, GIOVANOLI R, et al. Early diagenetic influences on iron transformations in a freshwater lake sediment[J]. Chemical Geology, 1991, 90(3/4):233-252.
[29] FRITZ S C.Paleolimnological records of climatic change in North America[J]. Limnology & Oceanography, 1996, 41(5):882-889.
[30] 孔凡翠, 杨瑞东, 沙占江. 贵州草海赵家院子晚更新世泥炭层地球化学特征及其环境意义[J]. 地质论评, 2013, 59(4):716-730.
[31] 王琳,牛蕊, 孟庆浩, 等. 西藏羊八井七弄沟地区全新世温度变化的泥炭汞记录[J]. 海洋地质与第四纪地质, 2017(2):174-181.
[32] 王绍武. 全新世北大西洋冷事件[J]. 气候变化研究进展, 2008, 4(6):389-390.
[33] 施雅风, 孔昭宸. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学:化学, 1992, 22(12):1300-1308.
[34] 周卫建, 卢雪峰, 武振坤, 等. 若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年[J]. 科学通报, 2001, 46(12):1040-1044.
[35] 李世杰, 焦克勤. 3万年以来西昆仑山南坡的冰川变化[J]. 冰川冻土, 1990(4):311-318.
[36] SIROCKO F, SARNTHEIN M, ERLENKEUSER H, et al. Century-scale events in monsoonal climate over the past 24,000 years[J]. Nature, 1993, 364(6435):322-324.
[37] YU X, ZHOU W, FRANZEN L G, et al. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2006, 49(6):615-621.
[38] WANG Y, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon:Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723):854.
[39] BOND G, BONANI G. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549):2130-2136.
[40] 段克勤, 姚檀栋, 王宁练, 等. 青藏高原中部全新世气候不稳定性的高分辨率冰芯记录[J]. 中国科学:地球科学, 2012, 42(9):1441-1449.
Outlines

/