Attribute reduction based on information entropy of approximation boundary accuracy

  • LIANG Bao-hua ,
  • WU Qi-lin
Expand
  • 1. College of Information Engineering, Chaohu University, Hefei 238000, China;
    2. Institute of Networks and Distributed System, Chaohu University, Hefei 238000, China

Received date: 2017-04-21

  Online published: 2018-05-29

Abstract

From an information point of view, only the size of knowledge granularity is taken into account, while the importance of attributes cannot be objectively and comprehensively measured. First, starting from the perspective of algebra, the concept of approximate boundary accuracy is proposed. Afterwards, according to the definition of relative fuzzy entropy, this paper proposes two new concepts for relative information entropy and enhanced information entropy. Compared with relative fuzzy entropy, the proposed information entropy has an obvious magnification effect. Two new methods of attribute reduction are subsequently proposed by incorporating approximate boundary accuracy into relative information entropy and enhanced information entropy. Computing U/(Bb) while making full use of U/B can greatly reduce the computational overhead on time. Finally, through the experimental analysis and comparison, it is validated that the proposed algorithm has feasibility and effectiveness in both reduction quality and classification accuracy.

Cite this article

LIANG Bao-hua , WU Qi-lin . Attribute reduction based on information entropy of approximation boundary accuracy[J]. Journal of East China Normal University(Natural Science), 2018 , 2018(3) : 97 -108,156 . DOI: 10.3969/j.issn.1000-5641.2018.03.011

References

[1] PAWLAK Z, SKOWRON A. Rough sets:Some extensions[J]. Information Sciences, 2007, 117(1):28-40.
[2] PAWLAK Z. Rough sets[J]. Int J of Computer and Information Sciences, 1982, 11(5):341-356.
[3] 王熙照, 王婷婷, 翟俊海. 基于样例选取的属性约简算法[J]. 计算机研究与发展, 2012, 49(11):2305-2310.
[4] KIM K, CHU Y Y, WATADA J Z, et al. A DNA-based algorithm for minimizing decision rules:A rough sets approach[J]. IEEE Trans Nanobiosci, 2011, 10(3):139-151.
[5] HUANG C C, TSENG T L, JIANG F H, et al. Rough set theory:A novel approach for extraction of robust decision rules based on incremental attributes[J]. Annals of Operations Research, 2014, 216(1):163-189.
[6] 荆涛, 王家林, 石旭东, 等. 基于粗糙集约简的飞机发电机故障诊断决策研究[J]. 计算机应用研究, 2017, 34(4):1101-1104.
[7] 朱庆, 苗双喜, 丁雨淋, 等. 知识引导的滑坡监测数据粗差定位与剔除方法[J]. 武汉大学学报(信息科学版), 2017, 42(4):496-502.
[8] 梁宝华, 汪世义. 行式存储的快速属性约简算法[J]. 模式识别与人工智能, 2015, 8(9):795-801.
[9] 赵洁, 梁俊杰, 董振宁, 等. 位运算和核属性快速识别下的粗糙集属性约简算法研究[J]. 小型微型计算机系统, 2015, 36(2):316-321.
[10] 史博文, 李国和, 吴卫江, 等. 基于强化正域的属性约简方法[J]. 计算机应用研究, 2017, 34(1):107-109.
[11] 周建华, 徐章艳, 章晨光. 改进的差别矩阵的快速属性约简算法[J]. 小型微型计算机系统, 2014, 35(4):831-834.
[12] 蒋瑜. 基于差别信息树的rough set属性约简算法[J]. 控制与决策, 2015, 30(8):1531-1536.
[13] 龙浩, 徐超. 基于改进差别矩阵的属性约简增量式更新算法[J]. 计算机科学, 2015, 42(6):251-255.
[14] SHANNON C E. The mathematical theory of communication[J]. Bell System Technical J, 1948, 27(3/4):373-423.
[15] 王国胤, 于洪, 杨大春. 基于条件信息熵的决策表约简[J]. 计算机学报, 2002, 25(7):759-776.
[16] 杨明. 决策表中基于条件信息熵的近似约简[J]. 电子学报, 2007, 35(11):2156-2160.
[17] 张清华, 肖雨. 新的信息熵属性约简[J]. 计算机科学与探索, 2013, 7(4):359-367.
[18] 潘瑞林, 李园沁, 张洪亮, 等. 基于α信息熵的模糊粗糙集属性约简方法[J]. 控制与决策, 2017, 32(2):340-348.
[19] 江峰, 王莎莎, 杜军威, 等. 基于近似决策熵的属性约简[J]. 控制与决策, 2015, 30(1):65-70.
[20] QIAN Y H, LIANG J Y, PEDRYCZ W, et al. Positive approximation:An accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9):597-618.
[21] 蒋瑜, 刘胤田, 李超. 基于Bucket Sort的快速属性约简算法[J]. 控制与决策, 2011, 26(2):207-212.
Outlines

/