Effective recommendation algorithms can help maximize the value of a product. By studying the user's preferences, we can recommend underlying contents for the user from mass merchandise information. However, most recommendation systems focus on popular products, ignoring those products that are currently not popular but have huge potential. Our recommendation system, based on reverse furthest neighbor (RFN) queries, uses the idea of mining popular products in niche markets. We improve the traditional collaborative filtering recommendation algorithm and adopt a collaborative filtering algorithm based on expert users. The modified algorithm can recommend products with potential value based on the power law, which makes the distribution of minority mined products more visible to users. Experimental results show that the quality of the proposed algorithm is high and is suitable for partially addressing the long tail problem.
WANG Kai
,
LI Bo-han
,
WAN Shuo
,
ZHANG An-man
,
GUAN Dong-hai
. Research on a commodity recommendation algorithm based on reverse furthest neighbor[J]. Journal of East China Normal University(Natural Science), 2019
, 2019(3)
: 63
-77
.
DOI: 10.3969/j.issn.1000-5641.2019.03.008
[1] BOBADILLA J, ORTEGA F, HERNANDO A. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46(1):109-132.
[2] XU H L, WU X, LI X D, et al. Comparison study of Internet recommendation system[J]. Journal of Software, 2009, 20(2):350-363.
[3] HUSSEIN T. Context-Aware Recommender Systems 2011[C]//ACM Conference on Recommender Systems. ACM, 2011:349-350.
[4] MENG X W, XUN H U, WANG L C, et al. Mobile recommender systems and their applications[J]. Journal of Software, 2013, 24(1):91-108.
[5] ANDERSON C. The long tail[J]. Wired Magazine, 2004, 12(10):170-177.
[6] NEWMAN M E J. Power laws, Pareto distributions and Zipf's law[J]. Contemporary Physics, 2005, 46(5):323-351.
[7] YANG X W, STECK H, GUO Y, et al. On top-k recommendation using social networks[C]//Proceedings of the 6th ACM Conference on Recommender Systems. ACM, 2012:67-74.
[8] KHRIBI M K, JEMNI M, NASRAOUI O. Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval[C]//Advanced Learning Technologies, 2008, ICALT'08, 8th IEEE International Conference on. IEEE, 2008:241-245.
[9] ABEL F, GAO Q, HOUBEN G J, et al. Analyzing user modeling on twitter for personalized news recommendations[C]//International Conference on User Modeling, Adaptation, and Personalization. Berlin:Springer, 2011:1-12.
[10] YAO B, LI F F, KUMAR P. Reverse furthest neighbors in spatial databases[C]//IEEE, International Conference on Data Engineering. IEEE, 2009:664-675.
[11] LIU J Q, CHEN H X, FURUSE K, et al. An efficient algorithm for arbitrary reverse furthest neighbor queries[C]//Asia-Pacific Web Conference. Berlin:Springer, 2012:60-72.
[12] WANG S L, CHEEMA M A, LIN X M, et al. Efficiently computing reverse k furthest neighbors[C]//Data Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE, 2016:1110-1121.
[13] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70.
[14] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001:285-295.
[15] XIAO P, SHAO L S, LI X R. Improved collaborative filtering algorithm in the research and application of personalized movie recommendations[C]//Intelligent Systems Design and Engineering Applications, 20134th International Conference on. IEEE, 2013:349-352.
[16] ZHAO Z D, SHANG M S. User-based collaborative-filtering recommendation algorithms on hadoop[C]//20103rd International Conference on Knowledge Discovery and Data Mining. IEEE, 2010:478-481.
[17] PIRASTEH P, JUNG J J, HWANG D. Item-based collaborative filtering with attribute correlation:A case study on movie recommendation[C]//Asian Conference on Intelligent Information and Database Systems. Cham:Springer, 2014:245-252.
[18] VOZALIS E G, MARGARITIS K G. Recommender systems:An experimental comparison of two filtering algorithms[C]//Proceedings of the 9th Panhellenic Conference in Informatics-PCI 2003. 2003.
[19] MA H F, JIA M H Z, ZHANG D, et al. Combining tag correlation and user social relation for microblog recommendation[J]. Information Sciences, 2017, 385/386:325-337.
[20] 郭娣, 赵海燕. 融合标签流行度和时间权重的矩阵分解推荐算法[J]. 小型微型计算机系统, 2016, 37(2):293-297.
[21] FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power-law relationships of the internet topology[J]. ACM SIGCOMM Computer Communication Review, 1999, 29(4):251-262.
[22] CLEMENTI F, GALLEGATI M. Power law tails in the Italian personal income distribution[J]. Physica A:Statistical Mechanics and its Applications, 2005, 350(2/3/4):427-438.
[23] NEWMAN M E J. Power laws, Pareto distributions and Zipf's law[J]. Contemporary physics, 2005, 46(5):323-351.
[24] CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distributions in empirical data[J]. SIAM review, 2009, 51(4):661-703.
[25] LI B H, ZHANG C, CHEN W H, et al. Dynamic reverse furthest neighbor querying algorithm of moving objects[C]//ADMA 2016:Advanced Data Mining and Applications. Cham:Springer, 2016:266-279.
[26] 郑伟, 李博涵, 王雅楠, 等. 融合偏好交互的组推荐算法模型[J]. 小型微型计算机系统, 2018, 2(39):372-378.
[27] CLAUSET A, SHALIZI C R, NEWMAN M E J. Power law distributions in empirical data[J]. SIAM Review, 2009, 51(4):661-703.
[28] 高珂. 基于消费者行为分析的电子商务市场研究[D]. 山东青岛:青岛理工大学, 2010.