In this paper, four kinds of common fillers natural soil, humus soil, biological ceramist and clinoptilolite were used to design three kinds of ecologic riparian devices (R1, R2 and R3) in different mixing proportions, and the devices were all filled with ryegrass. This study explores the purification ability of different riparian zone treatment units for the tailwater of rural sewage treatment plants, and provides a scientific basis for the application of this process in engineering practice. The results showed that the removal rate of pollutants (not including NH4+-N) by R1 was significantly better than R2 and R3, and the water quality was more stable. The average removal rates of TN, NH4+-N, TP, and CODCr were 23.0%, 49.5%, 36.3%, and 25.6% respectively. The contribution of ryegrass to the removal of N and P in the tail water was 23.5% and 22.6% respectively; hence, its purification effect on tail water is confirmed. The average removal rate of NH4+-N in water containing clinoptilolite was the highest (58.2%) with R2. The genus of organisms that remove organic matter from the biofilm of the ecological riparian zone played the dominant role (eg, sphingomonas), while the proportion of bacteria for nitrogen and phosphorus removal was small (less than 2%), This indicates that the removal of organic matter in the tail water of an eco-riparian zone depends primarily on the microbial degradation and transformation of the filler, while the removal of nitrogen and phosphorus depends primarily on the adsorption of the filler and the plant. Hence, subsequent research can strengthen the function of the riparian zone according to the type of pollutants, and try to add clinoptilolite to the existing packing configuration of R1, thereby further strengthening the deep purification effect of the ecological riparian zone on the tail water of rural domestic sewage plants.
YANG Yin-chuan
,
CHANG Yue-ya
,
CUI He
,
HUANG Min-sheng
,
HE Yan
. Experimental investigation of advanced purification of tail water in a rural sewage treatment plant of an ecological riparian zone[J]. Journal of East China Normal University(Natural Science), 2019
, 2019(4)
: 133
-143
.
DOI: 10.3969/j.issn.1000-5641.2019.04.013
[1] 王权典, 冯善书. 我国农村水环境问题及其法治因素的实证分析[C]//中国法学会环境资源法学研究会. 水污染防治立法和循环经济立法研究——2005年全国环境资源法学研讨会论文集(第一册). 江西赣州:[出版社不详], 2005:204-210.
[2] 林龙. 论《水污染防治法》在农村水污染防治方面的不足与完善[J]. 农业经济, 2015(5):52-54.
[3] 师晓春, 冯欣. 农村水污染现状及治理对策[J]. 环境保护与循环经济, 2011(5):40-42.
[4] 于宁. 我国农村污水处理技术研究进展[J]. 安徽农业科学, 2014(11):3323-3325.
[5] 中华人民共和国环境保护部, 中华人民共和国国家统计局, 中华人民共和国农业部. 全国第一次污染源普查公报[R]. 2010.
[6] 潘碌亭, 吴坤, 杨学军, 等. 我国农村污水现状及处理方法探析[J]. 现代农业科技, 2015(5):223-225.
[7] 国家环境保护总局. GB18918-2002城镇污水处理厂污染物排放标准[S]. 2002.
[8] 孙晓杰, 王嘉捷, 赵孝芹, 等. 我国城市污水厂推行一级A标提标改造探讨[J]. 环境工程, 2013(6):12-15.
[9] 刘海琴, 邱园园, 闻学政, 等. 4种水生植物深度净化村镇生活污水厂尾水效果研究[J]. 中国生态农业学报, 2018(4):616-626.
[10] 谷敬花. 新农村污水处理设施建设、运营管理模式研究[D]. 西安:西安建筑科技大学, 2011.
[11] DOSSKEY M G, VIDON P, GURWICKk N P, et al. The role of riparian vegetation in protecting and improving chemical water quality in streams[J]. Journal of the American Water Resources Association, 2010, 46(2):261-277.
[12] 赵鹏, 胡艳芳, 林峻宇. 不同河岸带修复策略对氮磷非点源污染的净化作用[J]. 中国环境科学, 2015(7):2160-2170.
[13] 宋思铭. 河岸缓冲带净水效果及优化配置技术研究[D]. 北京:北京林业大学, 2012.
[14] MUSCUTT A D, HARRIS G L, BAILEY S W, et al. Buffer zones to improve water quality:A review of their potential use in UK agriculture[J]. Agriculture, Ecosystems and Environment. 1993, 45(1):59-77.
[15] DWIRE K A, LOWRANCE R R. The role of riparian vegetation in protecting and improving chemical water quality in streams[J]. Journal of the American Water Resources Association. 2006, 42(1):1-4.
[16] 王文超, 管俊芳, 严春杰, 等. 斜发沸石处理氨氮废水[J]. 环境工程学报, 2014(3):1036-1040.
[17] 蒋丽, 谌建宇, 李小明, 等. 粉煤灰陶粒对废水中磷酸盐的吸附试验研究[J]. 环境科学学报, 2011(7):1413-1420.
[18] 赵占军. 重庆市长寿区城市河岸生态修复技术研究[D]. 北京:北京林业大学, 2011.
[19] 陈云霞. 人工复合生态床处理村镇生活污水试验研究[D]. 西安:西安建筑科技大学, 2003.
[20] 吴敏, 朱睿, 潘孝辉, 等. 腐殖土理化性质的研究[J]. 工业用水与废水, 2009(1):61-63.
[21] 常越亚. 农村生活污水处理生物生态组合技术优选及应用示范[D]. 上海:华东师范大学, 2017.
[22] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
[23] 张韫. 土壤水植物理化分析教程[M]. 北京:中国林业出版社, 2011.
[24] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海科学技术出版社, 1980.
[25] BOOKER N A, COONEY E L, PRIESTLY A J. Ammonia removal from sewage using natural Australian zeolite[J]. Water Science and Technology, 1996, 34(9):17-24.
[26] 李日强, 李松桧, 王江迪. 沸石的活化及其对水中氨氮的吸附[J]. 环境科学学报, 2008(8):1618-1624.
[27] 王郑. 土壤渗滤-人工湿地-生态浮床组合工艺处理农家乐生活污水[D]. 合肥:合肥工业大学, 2016.
[28] 李屹, 沈剑, 林燕, 等. 土壤渗滤系统中污染物去除效果分析[J]. 生态与农村环境学报, 2013(6):738-742.
[29] 王丽君, 刘玉忠, 张列宇, 等. 地下土壤渗滤系统中溶解性有机物组成及变化规律研究[J]. 光谱学与光谱分析, 2013(8):2123-2127.
[30] 李萍萍, 崔波, 付为国, 等. 河岸带不同植被类型及宽度对污染物去除效果的影响[J]. 南京林业大学学报(自然科学版), 2013(6):47-52.
[31] 张思, 宁国辉, 杨铮铮, 等. 复合填料土壤渗滤系统处理农村生活污水的效果[J]. 环境工程学报, 2014(11):4625-4630.
[32] CHEN C, ZHANG R, WANG L, et al. Removal of nitrogen from wastewater with perennial ryegrass/artificial aquatic mats biofilm combined system[J]. Journal of Environmental Sciences, 2013, 25(4):670-676.
[33] CHEN Y, ZHAO Z, PENG Y, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process:High-throughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology, 2016, 220:225-232.
[34] ZHONG F, WU J, DAI Y, et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration[J]. Applied Microbiology and Biotechnology, 2015, 99(3):1499-1512.
[35] 孙振丽, 宣引明, 张皓, 等. 南美白对虾养殖环境及其肠道细菌多样性分析[J]. 中国水产科学, 2016(3):594-605.
[36] 周明明, 李晓雁, 陈悦, 等. 鞘氨醇单胞菌TP-3原生质体制备与再生的研究[J]. 食品工业科技, 2015(22):184-188.
[37] 宗炯, 朱雪竹, 凌婉婷, 等. 多环芳烃污染对丛枝菌根真菌生物学性状的影响[J]. 农业环境科学学报, 2014(2):305-312.
[38] HE Y, ZHOU G, ZHAO Y. Nitrification with high nitrite accumulation for the treatment of "Old" landfill leachates[J]. Environmental Engineering Science, 2007, 24(8):1084-1094.