Estuary and Coastal Research

Study on the safety of sea dikes against coastal erosion in a strong tidal estuary

  • LI Lu ,
  • LIU Xin-cheng ,
  • SONG Yong-gang ,
  • ZHAO Geng-run
Expand
  • 1. Shanghai Water Engineering Design and Research Institute Co. Ltd., Shanghai 200061, China;
    2. Shanghai Engineering Research Center of Coastal Zones, Shanghai 200061, China

Received date: 2018-07-29

  Online published: 2019-07-18

Abstract

High resolution bathymetric data along the Huadianhuiba sea dike, a typical eroding coast on the northern coastline of Hangzhou Bay, was collected to analyze seabed evolution. A wave model covering the Changjiang Estuary and Hangzhou Bay was built to obtain the wave elements along the sea dike. Then, sensitivity analyses were carried out to calculate the impacts of coastal erosion on the wave elements, the required crest elevation, and the intensity of the seaside dike revetment. The results indicate that under a design condition of a 200 year return period with increasing water depth in front of the sea dike, the mean wave height and wave period are almost stable, while the wave length and H1% are significantly increased. The increased wave length, due to the topography deepening, is found to be a major factor for the subsequent wave run-up, which reduces the defense standard of sea dikes at crest elevation. In addition, the required intensity of the seaside dike revetment increases significantly with the depth of water in front of the sea dike. This indicates that a safety margin should be accounted for in design of the sea dike.

Cite this article

LI Lu , LIU Xin-cheng , SONG Yong-gang , ZHAO Geng-run . Study on the safety of sea dikes against coastal erosion in a strong tidal estuary[J]. Journal of East China Normal University(Natural Science), 2019 , 2019(4) : 202 -211 . DOI: 10.3969/j.issn.1000-5641.2019.04.019

References

[1] 黎兵. 上海近岸海域近30年来的地形演变和机制探讨[J]. 上海地质, 2010, 31(3):29-34.
[2] 谢东风, 潘存鸿, 曹颖, 等. 近50a来杭州湾冲淤变化规律与机制研究[J]. 海洋学报, 2013, 35(4):121-128.
[3] 李九发, 戴志军, 刘新成, 等. 长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究[J]. 泥沙研究, 2010(3):31-37.
[4] 王颖, 刘桦, 张景新. 杭州湾北岸水下地形冲淤演变分析[J]. 水道港口, 2011, 32(3):173-178.
[5] 肖志桥, 莫敖全, 程松明. "麦莎"台风对促淤工程的破坏分析及修复加固措施[C]. 上海市水利学会学术年会, 2005:323-327.
[6] 戴志军, 张小玲, 闫虹, 等. 台风作用下淤泥质海岸动力地貌响应[J]. 海洋工程, 2009, 27(2):63-70.
[7] 茅志昌, 郭建强, 虞志英, 等. 杭州湾北岸岸滩冲淤分析[J]. 海洋工程, 2008, 26(1):108-113.
[8] 上海市水利工程设计研究院有限公司. 上海冲蚀性海岸防汛风险及预警研究[R]. 上海, 2016.
[9] 李路, 刘新成. 分形理论在杭州湾北岸岸滩演变预测中的应用[J]. 上海水务, 2016, 32(3):56-60.
[10] Danish Hydraulic Institute (DHI). Mike 21 spectral wave module. Scientific documentation[R]. Denmark, 2012.
[11] REMYA P G, KUMAR R, BASU S, et al. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW model[J]. Journal of Earth System Science, 2012, 121(2):385-392.
[12] 孔令双, 戚定满, 万远扬, 等. 长江口海域波浪场模拟研究[J]. 水运工程, 2010(2):46-49.
[13] KURIAN N P, RAJITH K, HAMEED T S, et al. Wind waves and sediment transport regime off the south-central Kerala coast, India[J]. Natural Hazards, 2009, 49(1):325-345.
[14] KRISTENSEN S E, DRØNEN N, DEIGAARD R. Hybrid morphological modelling of shoreline response to a detached breakwater[J]. Coastal Engineering, 2013, 71:13-27.
[15] ELISA C, ALESSIO R, ANDREA P, et al. Study of wave runup using numerical models and low-altitude aerial photogrammetry:A tool for coastal management[J]. Estuarine, Coastal and Shelf Science, 2014, 149:160-167.
[16] RYAN J L, COLIN H, CHARITHA B P. Morphological constraints to wave-driven circulation in coastalreef-lagoon systems:A numerical study[J]. Journal of geophysical research, 2010, 115(C09021). DOI:10.1029/2009JC005753.
[17] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 海堤工程设计规范:GB/T 51015-2014[S]. 北京:中国标准出版社, 2014.
[18] 上海市城乡建设和交通委员会. 滩涂促淤圈围造地工程设计规范:DG/TJ08-2111-2012[S]. 上海, 2012.
Outlines

/