[1] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展, 2016, 53(3):582-600.
[2] 王厚峰.指代消解的基本方法和实现技术[J].中文信息学报, 2002, 16(6):9-17.
[3] GETOOR L, MACHANAVAJJHALA A. Entity resolution:Theory, practice&open challenge[J]. Proceedings of the Very Large Data Bases Endowment, 2012, 5(12):2018-2019.
[4] MELLI G, ESTER M. Supervised identification and linking of concept mentions to a domain-specific ontology[C]//Proceedings of the 19th ACM International Conference on Information&Knowledge Management. 2010:1717-1720.
[5] JURAFSKY D, MARTIN H. Speech and Language Processing:An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition[M]. New Delhi:Pearson Education, 2000.
[6] LANG J, QIN B, LIU T, et al. Intra-document coreference resolution:The state of the art[J]. Journal of Chinese Language and Computing, 2008,17(4):227-253.
[7] 宋洋,王厚峰.共指消解研究方法综述[J].中文信息学报, 2015, 29(1):1-12.
[8] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of NAACL-HLT. 2016:260-270.
[9] 高艳红,李爱萍,段利国.面向实体链接的多特征图模型实体消歧方法[J].计算机应用研究, 2017, 34(10):2909-2914.
[10] LI Y, WANG C, HAN F Q, et al. Mining evidences for named entity disambiguation[C]//Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining. 2013:1070-1078.
[11] DEEMTER K V, KIBBLE R. On coreferring:Coreference in MUC and related annotation schemes[J]. Computational Linguistics, 2000, 26(4):629-637.
[12] MITKOV R. Anaphora resolution:The state of the art[D]. Wolverhampton:University of Wolverhampton, 1999.
[13] HOBBS J R. Resolving pronoun references[J]. Journal of Lingua, 1978, 44:311-338.
[14] WALKER M A. Evaluating discourse processing algorithms[C]//Proceedings of the 27th Annual Meeting of Association of Computational Linguistics. Vancouver, 1989.
[15] GROSZ B, JOSHI A, WEINSTEIN S. Centering:A framework for modelling the local coherence of discourse[J]. Journal of Computational Linguistics, 1995, 21(2):203-225.
[16] MCCARTHY J, LEHNERT W. Using decision trees for coreference resolution[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. 1995.
[17] PONZETTO S P, STRUBE M. Exploiting semantic role labeling, wordnet and wikipedia for coreference resolution[C]//Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. 2006:192-199.
[18] RAHMAN A, NG V. Supervised models for coreference resolution[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009:968-977.
[19] CARDIE C, WAGSTAFF K. Noun phrase coreference as clustering[C]//Proceedings of the Joint Conference on Empirical Methods in NLP and Very Large Corpora. 1999:277-308.
[20] 谢永康,周雅倩,黄萱菁.一种基于谱聚类的共指消解方法[J].中文信息学报, 2007, 21(2):77-82.
[21] 周俊生,黄书剑,陈家骏,等.一种基于图划分的无监督汉语指代消解算法[J].中文信息学报, 2007, 21(2):77-82.
[22] MULLER C, RAPP S, STRUBE M. Applying co-training to reference resolution[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002:352-359
[23] DENIS P, BALDRIDGE J. Joint determination of anaphoricity and coreference resolution using integer programming[C]//Proceedings of Human Language Technologies 2007:The Conference of the North American Chapter of the Association for Computational Linguistics. 2007:236-243.
[24] RAGHUNATHAN K, LEE H, RANGARAJAN S, et al. A multi-pass sieve for coreference resolution[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 2010.
[25] VESDAPUNT N, BELLARE K, DALVI N. Crowdsourcing algorithms for entity resolution[C]//Proceedings of the VLDB Endowment. 2014:1071-1082.
[26] RAHMAN A, NG V. Coreference resolution with world knowledge[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. 2011:814-824.
[27] RATINOV L, ROTH D. Learning-based Multi-Sieve Co-Reference Resolution with Knowledge[M]. Association for Computational Linguistics, 2012:1234-1244.
[28] DURRETT G, KLEIN D. Easy Victories and Uphill Battles in Coreference Resolution[M]. Association for Computational Linguistics, 2013:1971-1982.
[29] SORALUZE A, ARREGI O, ARREGI X, et al. Enriching basque coreference resolution system using semantic knowledge sources[C]//Proceedings of the 2nd Workshop on Coreference Resolution Beyond OntoNotes. Association for Computational Linguistics, 2017:8-16.
[30] WISEMAN S, RUSH A M, SHIEBER S M. Learning global features for coreference resolution[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2016.
[31] CLARK K, MANNING C D. Deep reinforcement learning for mention-ranking coreference models[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016:2256-2262.
[32] LEE K, HE L H, LEWIS M, et al. End-to-end neural coreference resolution[C]//Conference on Empirical Methods in Natural Language Processing. 2017:188-197.
[33] HAGHIGHI A, KLEIN D. Simple coreference resolution with rich syntactic and semantic features[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009:1152-1161.
[34] CONVERSE S P. Pronominal Anaphora Resolution in Chinese[D]. Pennsylvania:University of Pennsylvania, 2006.
[35] SIDNER C. Focusing for interpretation of pronouns[J]. Computational Linguistics. 1981, 7(4):217-231.
[36] BRENNAN S E, FRIEDMAN M W, POLLARD C. A centering approach to pronouns[C]//Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics. 1987:155-162.
[37] GE N Y, HALE J, CHARNIAK E. A statistical approach to anaphora resolution[C]//Proceedings of the ACL 1998 Workshop on Very Large Corpora. 1998.
[38] MCCALLUM A, WELLNER B. Conditional models of identity uncertainty with application to noun coreference[C]//International Conference on Neural Information Processing System. 2004:905-912.
[39] NG V. Unsupervised models for coreference resolution[C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. 2008:640-649.
[40] BHATTACHARYA I, GETOOR L. A latent Dirichlet model for unsupervised entity resolution[C]//SIAM International Conference on Data Mining. 2006.
[41] RAGHAVAN P, FOSLERLUSSIER E, LAI A M. Exploring semi-supervised coreference resolution of medical concepts using semantic and temporal features[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2012:731-741.
[42] MCCALLUM A, WELLNER B. Conditional models of identity uncertainty with application to noun coreference[C]//Proceedings of Neural Information Processing Systems. 2004:905-912.
[43] YANG X, SU J. Coreference resolution using semantic relatedness information from automatically discovered patterns[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. 2007:528-535.
[44] CHEN C, NG V. Combining the best of two worlds:A hybrid approach to multilingual coreference resolution[C]//Joint Conference on EMNLP&CONLL-Shared Task. Association for Computational Linguistics, 2012:56-63.
[45] LEE H, PEIRSMAN Y, CHANG A, et al. Stanford's multi-pass sieve coreference resolution system at the conll-2011 shared task[C]//Proceedings of the 15th Conference on Computational Natural Language Learning:Shared Task. 2011:28-34.
[46] FERNANDES E R, SANTOS C N, MILIDIU R L. Latent trees for coreference resolution[J]. Computational Linguistics, 2014, 40(4):801-835.
[47] FERNANDES E R, MILIDIU R L. Entropy-guided feature generation for structured learning of Portuguese dependency parsing[C]//Computational Processing of the Portuguese Language. 2012:146-156.
[48] YU C N J, JOACHIMS T. Learning structural SVMs with latent variables[C]//Proceedings of the 26th Annual International Conference on Machine Learning. 2009:1169-1176.
[49] DAUME H, MARCU D. Learning as search optimization:Approximate large margin methods for structured prediction[C]//Proceedings of the 22nd International Conference on Machine Learning. 2005:169-176.
[50] BJORKELUND A, KUHN J. Learning structured perceptrons for coreference resolution with latent antecedents and non-local features[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Lingustics. 2014:47-57.
[51] MARTSCHAT S, STRUBE M. Latent structures for coreference resolution[J]. Transactions of the Association for Computational Linguistics, 2015(3):405-418.
[52] RECASENS M, MARNEFFE M C, POTTS C. The life and death of discourse entities:Identifying singleton metions[C]//The 2013 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 2013:627-633.
[53] MARNEFFE M C, RECASENS M, POTTS C, et al. Modeling the lifespan of discourse entities with application to coreference resolution[J]. Journal of Artificial Intelligence Research, 2015, 52:445-475.
[54] PARK C, CHOI K H, LEE C K, et al. Korean coreference resolution with guided mention pair model using deep learning[J]. ETRI Journal, 2016, 38(6):1207-1217.
[55] CLARK K, MANNING C D. Improving coreference resolution by learning entity-level distributed representations[EB/OL].[2019-05-03]. https://arxiv.org/pdf/1606.01323.pdf.
[56] MIKOLOV T, KARAFIAT M, BURGET L, et al. Recurrent neural network based language model[C]//Conference of the International Speech Communication Association. 2010:1045-1048.
[57] PETERS M E, NEUMANN M, LYYER M, et al. Deep contextualized word representations[C]//North American Chapter of the Association for Computational Linguistics. 2018:2227-2237.
[58] LEE K, HE L H, ZETTLEMOYER L. Higher-order coreference resolution with coarse-to-fine inference[C]//North American Chapter of the Association for Computational Linguistics. 2018:687-692.
[59] LAPPIN S, SHALOM H J. An algorithm for pronominal anaphora resolution[J]. Computational Linguistics, 1994, 20(4):535-561.
[60] POESIO M, STEVENSON R, EUGENIO B D, et al. Centering:A parametric theory and its instantiations[J]. Computational Linguistics, 2004, 30(3):309-363.
[61] NG V, CARDIE C. Improving machine learning approaches to coreference resolution[C]//Meeting of the Association of Computational Linguistics. 2002:104-111.
[62] PONZETTO S P, STRUBE M. Exploiting semantic role labeling, WordNet and Wikipedia for coreference resolution[C]//Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL. 2006:192-199.
[63] DENIS P, BALDRIDGE J. Specialized models and ranking for coreference resolution[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2008:660-669.
[64] YANG X, ZHOU G, SU J, et al. Coreference resolution using competitive learning approach[C]//Proceedings of the Association of Computational Linguistics. 2003:176-183.
[65] YANG X F, SU J, LANG J, et al. An entity-mention model for coreference resolution with inductive logic programming[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2008:843-851.
[66] RAHMAN A, NG V. Narrowing the modeling gap:A cluster-ranking approach to coreference resolution[J]. Journal of Artificial Intelligence Research, 2011, 40:469-521.
[67] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Phys Rev E, 2004, 69(2):026113.
[68] BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Learning Theory. 1998:92-100.
[69] GANCHEV K, GRACA J, GILLENWATER J. Posterior regularization for structured latent variable models[J]. Journal of Machine Learning Research, 2010, 11(1):2001-2049.
[70] MOOSAVI N S, STRUBE M. Search space pruning:A simple solution for better coreference resolvers[C]//Proceedings of NAACL-HLT 2016. Association for Computational Linguistics, 2016:1005-1011.
[71] WISEMAN S, RUSH A M, SHIEBER S M, et al. Learning anaphoricity and antecedent ranking features for coreference resolution[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015:1416-1426.
[72] MA C, DOPPA J R, ORR J W, et al. Prune-and-score:Learning for greedy coreference resolution[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014.
[73] SUCHANEK F, KASNECI G, WEIKUM G. YAGO:A core of semantic knowledge unifying wordnet and Wikipedia[C]//Proceedings of the World Wide Web Conference. 2007:697-706.
[74] BAKER C F, FILLMORE C J, LOWE J B. The Berkeley FrameNet project[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th International Conference on Computational Linguistics. 1998:86-90.
[75] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1301.3781.pdf.
[76] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9:1735-1780.
[77] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2019-06-02]. https://arxiv.org/pdf/1409.0473.pdf.
[78] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436.
[79] CLARK K, MANNING C D. Entity-centric coreference resolution with model stacking[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015:1405-1415.
[80] HINTON G, TIELEMAN T. Lecture 6.5-RmsProp:Divide the gradient by a running average of its recent magnitude[J]. COURSERA:Neural Networks for Machine Learning, 2012, 4:26-30.
[81] HINTON G, SRIVASTAVA N, KRIZHEVSKY I, et al. Improving neural networks by preventing coadaptation of feature detectors[EB/OL].[2019-06-20]. https://arxiv.org/pdf/1207.0580.pdf.
[82] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3/4):229-256.
[83] JI Y F, TAN C H, MARTSCHAT S, et al. Dynamic entity representations in neural language models[EB/OL].[2019-06-10]. https://arxiv.org/pdf/1708.00781.pdf.
[84] PENNINGTON J, SOCHER R, MANNING C D. GloVe:Global vectors for word representation[C]//Conference on Empirical Methods in Natural Language Processing. 2014:1532-1543.
[85] TURIAN J, RATINOV L, BENGIO Y. Word representations:A simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. 2010:384-394.
[86] GRISHMAN R, SUNDHEIM B. Message understanding conference-6:A brief history[C]//Proceedings of the 16th Conference on Computational linguistics. 1996:466-471.
[87] NIST, US. The ACE 2003 Evaluation Plan V[R]. US National Institute for Standards and Technology (NIST), 2003.
[88] RECASENS M, MARQUEZ L, SAPENA E, et al. SemEval-2010 Task 1 OntoNotes English:Coreference Resolution in Multiple Languages[M]. Philadelphia:Linguistic Data Consortium, 2011.
[89] PRADHAN S S, RAMSHAW L, MARCUS M, et al. CoNLL-2011 shared task:Modeling unrestricted coreference in OntoNotes[C]//Proceedings of the Shared Task of the 15th Conference on Computational Natural Language Learning. 2011:1-27
[90] PRADHAN S, MOSCHITTI A, XUE N W, et al. CoNLL-2012 shared task:Modeling multilingual unrestricted coreference in OntoNotes[C]//Proceedings of the Shared Task of the 16th Conference on Computational Natural Language Learning. 2012:1-40.
[91] VILAIN M, BURGER J, ABERDEEN J, et al. A model-theoretic coreference scoring scheme[C]//Proceedings of the 6th Conference on Message Understanding. 1995:45-52.
[92] BAGGA A, BALDWIN B. Algorithms for scoring coreference chains[C]//Proceedings of the Linguistic Coreference Workshop at the First International Conference on Language Resources and Evaluation. 1998:563-566.
[93] LUO X. On coreference resolution performance metrics[C]//Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. 2005:25-32.
[94] RECASENS M, HOVY E. BLANC:Implementing the rand index for coreference evaluation[J]. Natural Language Engineering, 2011, 17(4):485-510.
[95] LUO X, PRADHAN S, RECASENS M, et al. An extension of BLANC to system mentions[C]//Meeting of the Association for Computational Linguistics. 2014:24.
[96] MOOSAVI N S, STRUBE M. Which coreference evaluation metric do you trust?A proposal for a link-based entity aware metric[C]//Meeting of the Association for Computational Linguistics. 2016:7-12.
[97] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2):83-97.
[98] MUNKRES J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial&Applied Mathematics, 1957, 5(1):32-38.
[99] PENG H R, KHASHABI D, ROTH D. Solving hard coreference problems[EB/OL].[2019-05-1]. https://arxiv.org/pdf/1907.05524.pdf.
[100] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2017, 5(1):44-53.
[101] LEE D H. Pseudo-Label:The simple and efficient semi-supervised learning method for deep neural networks[C]//International Conference on Machine Learning. 2013.
[102] RASMUS A, VALPOLA H, HONKALA M, et al. Semi-supervised learning with ladder networks[J]. Computer Science, 2015:1-9.
[103] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529:484-489.
[104] MA S, SUN X, LIN J Y, et al. A hierarchical end-to-end model for jointly improving text summarization and sentiment classification[C]//International Joint Conferencces on Artificial Intelligence. 2018.
[105] CHO K, VAN MERRENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoderdecoder for statistical machine translation[C]//Conference on Empirical Methods in Natural Language Processing. 2014:1724-1734.