Mathematics

Analysis and application of exponential degradation paths with random failure thresholds

  • GUAN Qiang ,
  • FU Zhiliang
Expand
  • Institute of Information Engineering, Sanming University, Sanming Fujian 365004, China

Received date: 2018-10-20

  Online published: 2020-01-13

Abstract

In a classical degradation experiment, the performance of a product is reduced or raised to a certain threshold value, which is regarded as a product failure; this is often refereed to as single-point degradation. Although this definition is widely used, it is not sufficiently comprehensive and cannot be used alone to describe the full product degradation process. In this study, we improve the single-point degradation model and propose the interval degradation model; in this context, the previously fixed threshold value will be generalized to a random value at a specified interval. We discuss the lifetime distributions for a variety of interval degradation models when the degradation path is an exponential function. Numerical integration and Monte Carlo simulation are used to calculate the lifetime distribution for interval degradation models and single-point degradation models; in addition, we determine the relationship between the respective models. The simulation results reveal that the performance of the interval degradation model is more reasonable and effective than that of single-point degradation model.

Cite this article

GUAN Qiang , FU Zhiliang . Analysis and application of exponential degradation paths with random failure thresholds[J]. Journal of East China Normal University(Natural Science), 2020 , 2020(1) : 7 -15 . DOI: 10.3969/j.issn.1000-5641.201811040

References

[1] 庄东辰, 茆诗松. 退化数据统计分析[M]. 北京:中国统计出版社, 2013.
[2] 张永强, 刘琦, 周经伦. 小子样条件下基于指数退化轨道的性能可靠性评定[J]. 装备学院学报, 2007, 18(1):55-58. DOI:10.3783/j.issn.1673-0127.2007.01.013
[3] 赵建印, 孙权, 彭宝华, 等. 基于加速退化试验数据的可靠性分析[J]. 电子质量, 2005(7):30-33. DOI:10.3969/j.issn.1003-0107.2005.07.011
[4] 邓爱民. 高可靠长寿命产品可靠性技术研究[D]. 长沙:国防科学技术大学, 2006.
[5] 潘正强. 加速应力下二元退化可靠性建模及其试验设计方法[D].长沙:国防科学技术大学, 2011.
[6] NELSON W B. Analysis of performance degradation data from accelerated tests[J]. IEEE Transactions on Reliability, 1981(2):149-154.
[7] 苏振中. 基于退化失效模型的统计分析[D]. 上海:华东师范大学, 2011.
[8] 杨恒, 徐格宁, 韩子渊. 基于盲数理论的性能退化数据可靠性分析[J]. 机械强度, 2013(6):777-782
[9] 管强, 汤银才. 基于线性退化轨道的区间型建模分析及应用[J]. 应用概率统计, 2018, 34(4):427-440. DOI:10.3969/j.issn.1001-4268.2018.04.007
[10] 李庆扬. 数值分析[M]. 北京:清华大学出版社, 2001.
[11] 郭生良. γ能谱的蒙特卡罗计算方法探讨与模拟软件设计[D]. 成都:成都理工大学, 2008.
[12] GUAN Q, TANG Y C, XU A C. Objective Bayesian analysis accelerated degradation test based on Wiener process models[J]. Applied Mathematical Modelling, 2016, 40(4):2743-2755. DOI:10.1016/j.apm.2015.09.076.
[13] HAO S, YANG J. Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels[J]. Computers & Industrial Engineering, 2018, 118:340-351.
[14] WANG H, WANG G, DUAN F. Planning of step-stress accelerated degradation test based on the inverse Gaussian process[J]. Reliability Engineering & System Safety, 2016, 154:97-105.
Outlines

/