First principle calculations indicate that Cr and N atoms in the orthorhombic phase of CrN (Chromium Nitride) tend to shift from their ideal positions along the [100] direction. This shift can induce zigzag Cr-N-Cr chains in the orthorhombic phase; these atomic distortions have not been taken into account in previous studies. The atomic distortions may decrease the total energy of the orthorhombic phase by 0.125 eV/formula unit and make the structure more stable. Lattice constants, moreover, may also be in better agreement with experiment results when considering these atomic distortions. Further, the bulk modulus K0 decreases significantly when considering the atomic distortions and is closer to the experimental value. The atomic distortions are induced by the asymmetric magnetic forces between asymmetric magnetic layers in the special antiferromagnetic order of the orthorhombic phase, which compensates for the magnetic forces between the layers. The atomic distortions would not change the Mott-insulator property of the orthorhombic phase but may reduce the band gap slightly.
[1] ZHONG L, LONG Y J, HAN X. Preparation and wear resistance properties of CrN coating by magnetron sputtering on tool surface[J]. Surface Technology, 2018, 47(10):151-156.
[2] HANG S, SUN D, FU Y Q, et al. Toughness measurement of thin films:A critical review[J]. Surface & Coatings Technology, 2005, 198(1/2/3):74-84.
[3] BROWNE J D, LIDDELL P R, STREET R, et al. An investigation of the antiferromagnetic transition of CrN[J]. Physica Status Solidi A, 1970, 1(4):715-723.
[4] CONSTANTIN C, HAIDER M B, INGRAM D, et al. Metal/semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2004, 85(26):6371-6373. DOI:10.1063/1.1836878.
[5] GALL D, SHIN C S, HAASCH R T, et al. Band gap in epitaxial NaCl-structure CrN(001) layers[J]. Journal of Applied Physics, 2002, 91(9):5882-5886. DOI:10.1063/1.1466528.
[6] HERLE P S, HEGDE M S, VASATHACHARYA N Y, et al. Synthesis of TiN, VN, and CrN from ammonolysis of TiS2, VS2, and Cr2S3[J]. Journal of Solid State Chemistry, 1997, 134(1):120-127. DOI:10.1006/jssc.1997.7554.
[7] CORLISS L M, ELLIOTT N, HASTINGS J M. Antiferromagnetic structure of CrN[J]. Physical Review, 1960, 117(4):929-935.
[8] FILIPPETTI A, HILL N A. Magnetic stress as a driving force of structural distortions:The case of CrN[J]. Physical Review Letters, 2000, 85(24):5166-5169. DOI:10.1103/PhysRevLett.85.5166.
[9] FILIPPETTI A, PICKETT W E, KLEIN B M. Competition between magnetic and structural transitions in CrN[J]. Physical Review B, 1999, 59(10):7043-7050. DOI:10.1103/PhysRevB.59.7043.
[10] HERWADKAR A, LAMBRECHT W R L. Electronic structure of CrN:A borderline Mott insulator[J]. Physical Review B, 2009, 79(3):035125. DOI:10.1103/PhysRevB.79.035125.
[11] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17):13115-13118. DOI:10.1103/PhysRevB.48.13115.
[12] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1):558-561. DOI:10.1103/PhysRevB.47.558.
[13] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. DOI:10.1103/PhysRevB.54.11169.
[14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996)[J]. Physical Review Letters, 1997, 78(7):1396-1396.
[15] ANISIMOV V I, GUNNARSSON O. Density-functional calculation of effective Coulomb interactions in metals[J]. Physical Review B, 1991, 43(10):7570-7574. DOI:10.1103/PhysRevB.43.7570.
[16] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators:Hubbard U instead of Stoner I[J]. Physical Review B, 1991, 44(3):943-954. DOI:10.1103/PhysRevB.44.943.
[17] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions:orbital ordering in Mott-Hubbard insulators[J]. Physical Review B, 1995, 52(8):R5467-R5470. DOI:10.1103/PhysRevB.52.R5467.
[18] PETUKHOV A G, MAZIN I I, CHIONCEL L, et al. Correlated metals and the LDA+U method[J]. Physical Review B, 2003, 67(15):153106.
[19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. DOI:10.1103/PhysRevB.13.5188.
[20] FRANK W, lSASSER C E, FAHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals[J]. Physical Review Letters, 1995, 74(10):1791-1794. DOI:10.1103/PhysRevLett.74.1791.
[21] BLAHA P, SCHWARZ K, MADSEN G K H, et al. WIEN2k:An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (User's Guide, WIEN2k_14.2(Release 10/15/2014)[M]. Wien, Austria:[s.n.], 2018.
[22] SCHWARZ K, BLAHA P, MADSEN G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences[J]. Computer Physics Communications, 2002, 147(1/2):71-76. DOI:10.1016/S0010-4655(02)00206-0.
[23] ANDERSEN O K, SAHA-DASGUPTA T. Muffin-tin orbitals of arbitrary order[J]. Physical Review B, 2000, 62(24):16219-16222. DOI:10.1103/PhysRevB.62.R16219.
[24] CHEN H Y, TSAI C J, LU F H. The Young's modulus of chromium nitride films[J]. Surface & Coatings Technology, 2004, 184(1):69-73.
[25] ALLING B, MARTEN T, ABRIKOSOV I A. Questionable collapse of the bulk modulus in CrN[J]. Nature Materials, 2010, 9(4):283-284. DOI:10.1038/nmat2722.
[26] LIN H, ZENG Z. Structural, electronic, and magnetic properties of CrN under high pressure[J]. Chinese Physics B, 2011, 20(7):077102. DOI:10.1088/674-1056/20/7/077102.
[27] RIVADULLA F, BANOBRE-LOPEZ M, QUINTELA C X, et al. Reduction of the bulk modulus at high pressure in CrN[J]. Nature Materials, 2009, 8(12):947-951. DOI:10.1038/nmat2549.
[28] COHEN R E, MAZIN I I, ISAAK D G. Magnetic collapse in transition metal oxides at high pressure:Implications for the Earth[J]. Science, 1997, 275(5300):654-657. DOI:10.1126/science.275.5300.654.