Application of Data Platform

Methodology for building a business-oriented data asset system: Feature hierarchies

  • REN Yinzi
Expand
  • Hangzhou DTWave Technology Co. Ltd., Hangzhou 311100, China

Received date: 2020-08-07

  Online published: 2020-09-24

Abstract

This paper proposes a new method for building a business-oriented data asset system. Data assets are one of the core components of the data middle office concept and require business-oriented asset mapping to realize the transformation from the asset to the broader business value. The proposed methodology uses feature hierarchies and describes how to organize data assets based on a tree structure, with the root as an object, the branch as a category, and a leaf/flower as a tag. There are energetic connections between the various object trees and the growth of these trees is supplied by the business. The instantiation of feature hierarchies can be realized in two modes: overall planning and local interception. The asset results are divided into two major parts, namely asset inventories and asset entities; these can be quickly configured as data service results for business use through service management tools in order to realize the value of the underlying data assets.

Cite this article

REN Yinzi . Methodology for building a business-oriented data asset system: Feature hierarchies[J]. Journal of East China Normal University(Natural Science), 2020 , 2020(5) : 137 -145 . DOI: 10.3969/j.issn.1000-5641.202091009

References

[1] 付登坡, 江敏, 任寅姿, 等. 数据中台: 让数据用起来 [M]. 北京: 机械工业出版社, 2019.
[2] 李雨霏, 刘海燕, 闫树. 面向价值实现的数据资产管理体系构建 [J]. 大数据, 2020, 6(3): 45-56
[3] 克里什·克里希南. 大数据与数据仓库 [M]. 北京: 机械工业出版社, 2018.
[4] 荫蒙. 数据仓库 [M]. 北京: 机械工业出版社, 2006.
[5] CHEVALIER M, EL MALKI M, KOPLIKU A, et al. How can we implement a Multidimensional Data Warehouse using NoSQL? [C]. International Conference on Enterprise Information Systems, 2015: 108-130.
[6] NGO V M, LE-KHAC N A, KECHADI M T. Designing and implementing data warehouse for agricultural big data[C]. International Conference on Big Data, 2019: 1-17.
[7] 张绍华. 大数据治理与服务 [M]. 上海: 上海科学技术出版社, 2016.
[8] 王汉生. 数据资产论 [J]. 经济理论与经济管理, 2019(6): 113.
[9] BOYER J, FRANK B, GREEN B, et al. Business Intelligence Strategy: A Practical Guide for Achieving BI Excellence [M]. [S.l.]: Mc Press, 2010.
[10] 阎彩英. OLTP技术及模型概要设计 [J]. 科技情报开发与经济, 2002(3): 102-103
[11] CHAUDHURI S, DAYAL U. An overview of data warehousing and OLAP technology [J]. ACM SIGMOD Record, 1997, 26(1): 65-74.
[12] 苗雨来. 基于多维精准客户画像的精细化营销助力4G发展 [J]. 山东通信技术, 2016(2): 38-39
[13] 刘京强. 公司财务指标评价体系建设的分析与建议 [J]. 纳税, 2020(12): 58-59
[14] 郝容. 大数据背景下会展企业精准营销策略分析 [J]. 现代商业, 2020(20): 7-8
Outlines

/