Physics and Electronics

Coupling behavior of WSe2 exciton and photon in an optical microcavity

  • Shuang LIANG ,
  • Yichi ZHONG ,
  • Wei XIE
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-03-06

  Online published: 2021-01-25

Abstract

In this paper, we study the strong and weak coupling between excitons of a WSe2 monomolecular thin film and a light field in a self-made Fabry–Pérot semiconductor microcavity at 300 K. The optical properties of the sample were studied using a micro-fluorescence / white light reflection spectroscopy system with integrated angular resolution; the formation of exciton polaritons was observed in the strong coupling region, corresponding to a Rabi splitting energy of 46.7 meV. The theoretical fitting results agree with the experimental phenomena. This lays the foundation for further research on the coherent properties of exciton polaritons, and the study also provide ideas for the application of industrial optoelectronic devices in the future..

Cite this article

Shuang LIANG , Yichi ZHONG , Wei XIE . Coupling behavior of WSe2 exciton and photon in an optical microcavity[J]. Journal of East China Normal University(Natural Science), 2021 , 2021(1) : 112 -118 . DOI: 10.3969/j.issn.1000-5641.202022003

References

1 WEISBUCH C, NISHIOKA M, ISHIKAWA A, et al. Physical Review Letters, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. 1992, 69 (23): 3314- 3317.
2 DENG H, WEIHS G, SANTORI C, et al. Science, Condensation of semiconductor microcavity exciton polaritons. 2002, 298 (5591): 199- 202.
3 WOUTERS M, CARUSOTTO I. Physical Review Letters, Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. 2007, 99 (14): 140402.
4 KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Nature, Bose-Einstein condensation of exciton polaritons. 2006, 443, 409- 414.
5 BALILI R, HARTWELL V, SNOKE D, et al. Science, Bose-Einstein condensation of microcavity polaritons in a trap. 2007, 316 (5827): 1007- 1010.
6 UTSUNOMIYA S, TIAN L, ROUMPOS G, et al. Nature Physics, Observation of Bogoliubov excitations in exciton-polariton condensates. 2008, 4 (9): 700- 705.
7 AMO A, SANVITTO D, LAUSSY F P, et al. Nature, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. 2009, 457, 291- U3.
8 AMO A, LEFRERE J, PIGEON S, et al. Nature Physics, Superfluidity of polaritons in semiconductor microcavities. 2009, 5 (11): 805- 810.
9 SICH M, KRIZHANOVSKII D N, SKOLNICK M S, et al. Nature Photonics, Observation of bright polariton solitons in a semiconductor microcavity. 2012, 6 (1): 50- 55.
10 WERTZ E, FERRIER L, SOLNYSHKOV D D, et al. Nature Physics, Spontaneous formation and optical manipulation of extended polariton condensates. 2010, 6 (11): 860- 864.
11 GEIM A K. Science, Graphene: Status and prospects. 2009, 324 (5934): 1530- 1534.
12 GEIM A K, NOVOSELOV K S. Nature Materials, The rise of graphene. 2007, 6 (3): 183- 191.
13 MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. Nature Reviews Materials, 2D transition metal dichalcogenides. 2017, 2 (8): 17033.
14 SHI W, YE J T, ZHANG Y J, et al. Scientific Reports, Superconductivity series in transition metal dichalcogenides by ionic gating. 2015, 8 (5): 12534.
15 JO S, COSTANZO D, BERGER H, et al. Nano Letters, Electrostatically induced superconductivity at the surface of WS2. 2015, 15 (2): 1197- 1202.
16 MAK K F, SHAN J. Nature Photonics, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. 2016, 10 (4): 216- 226.
17 PU J, TAKENOBU T S. Advanced materials, Monolayer transition metal dichalcogenides as light sources. 2018, 30 (33): 1707627.
18 KOPPENS F H L, MUELLER T, AVOURIS P, et al. Nature Nanotechnology, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. 2014, 9 (10): 780- 793.
19 WANG G, CHERNIKOV A, GLAZOV M M, et al. Reviews of Modern Physics, Colloquium: Excitons in atomically thin transition metal dichalcogenides. 2018, 90 (2): 021001.
20 MACIEJ K, MACLEJ R, MOLAS A A, et al. Nanophotonics, Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. 2017, 6 (6): 1289- 1308.
21 BALLARINI D, DE GIORGI M, CANCELLIERI E, et al. Nature Communication, All-optical polariton transistor. 2013, 4 (5): 1778.
22 DREISMANN A, OHADI H, REDONDO Y, et al. Nature Materials, A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. 2016, 15 (10): 1074- 1078.
23 CHRISTOPOULOS S, VON HOGERSTHAL G, BALDASSARRI H, et al. Physical Review Letters, Room-temperature polariton lasing in semiconductor microcavities. 2007, 98 (12): 126405.
24 STANLET R P, HOUDRE R, OESTER U, et al. Applied Physics Letters, Ultrahigh finesse microcavity with distributed Bragg reflectors. 1994, 65 (15): 1883- 1885.
25 AKAHANE Y, ASANO T, NODA S, et al. Nature, High-Q photonic nanocavity in a two-dimensional photonic crystal. 2003, 425, 944- 947.
26 SRINIVASAN K, PAINTER O. Nature, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. 2007, 450, 862- 865.
27 SPLENDIANI A, SUN L, ZHANG Y, et al. Nano Letters, Emerging photoluminescence in monolayer MoS2. 2010, 10 (4): 1271- 1275.
28 MAK K F, LEE C, HONE J, et al. Physical Review Letters, Atomically thin MoS2: A new direct-gap semiconductor . 2010, 105 (13): 136805.
29 NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Science, Electric field effect in atomically thin carbon films. 2004, 306 (5696): 666- 669.
30 YUN W S, HAN S W, HONG S C, et al. Physical Review B, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) . 2012, 85 (3): 033305.
31 GIOVANNA P, LUCIO C A. Physical Review B, Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. 1999, 5082, 59.
Outlines

/