Journal of East China Normal University(Natural Science) >
Whispering gallery mode in a two-dimensional electromagnetic Helmholtz cavity
Received date: 2020-03-31
Online published: 2021-01-28
In this paper, whispering gallery mode (WGM) excited in a two-dimensional electromagnetic Helmholtz cavity are studied using a rigorous, generalized dual series approach. The excitation wavelengths of several whispering gallery modes are given, and the dependence of electromagnetic whispering gallery modes on the angle of incidence and the angular width of opening cavities is investigated. It was found that WGM are very sensitive to slight changes in wavelength or the angular width of the opening; at the same time, WGM can be excited across a wide range of incident angles given a fixed orientation angle of the cavity. This shows that the angular width of the opening has a significant influence on the performance of Helmholtz cavities and hence is a key parameter in their design. On the other hand, given the lack of sensitivity to the incident angle, no particular specification is needed when designing an artificially structured electromagnetic material using these Helmholtz cavities; accordingly, the fabrication difficulty is relatively low.
Qianjing WANG , Junjie DU . Whispering gallery mode in a two-dimensional electromagnetic Helmholtz cavity[J]. Journal of East China Normal University(Natural Science), 2021 , 2021(1) : 119 -128 . DOI: 10.3969/j.issn.1000-5641.202022006
1 | LORD RAYLEIGH O M F R S. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, The problem of the whispering gallery. 1910, 20 (120): 1001- 1004. |
2 | MIE G. Annalen der Physik, Beitr?ge zur optik trüber medien, speziell kolloidaler metall?sungen. 1908, 330 (3): 377- 445. |
3 | RICHTMYER R D. Journal of Applied Physics, Dielectric resonators. 1939, 10 (6): 391- 398. |
4 | GARRETT C G B, KAISER W, BOND W L. Physical Review, Stimulated emission into optical whispering modes of spheres. 1961, 124 (6): 1807- 1809. |
5 | WALSH P, KEMENY G. Journal of Applied Physics, Laser operation without spikes in a ruby ring. 1963, 34 (4): 956- 957. |
6 | MCCALL S L, LEVI A F J, SLUSHER R E, et al. Applied Physics Letters, Whispering-gallery mode microdisk lasers. 1992, 60 (3): 289- 291. |
7 | SLUSHER R E, LEVI A F J, MOHIDEEN U, et al. Applied Physics Letters, Threshold characteristics of semiconductor microdisk lasers. 1993, 63 (10): 1310- 1312. |
8 | LEVI A F J, SLUSHER R E, MCCALL S L, et al. Applied Physics Letters, Directional light coupling from microdisk lasers. 1993, 62 (6): 561- 563. |
9 | XIA F N, SEKARIC L, VLASOV Y. Nature Photonics, Ultracompact optical buffers on a silicon chip. 2007, (1): 65- 71. |
10 | YANIK M F, FAN S H. Physical Review Letters, Stopping light all optically. 2004, 92 (8): 083901. |
11 | DONG C H, HE L, XIAO Y F, et al. Applied Physics Letters, Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing . 2009, 94 (23): 839- 842. |
12 | VOLLMER F, ARNOLD S. Nature Methods, Whispering-gallery-mode biosensing: Label-free detection down to single molecules. 2008, 5 (7): 591- 596. |
13 | VOLLMER F, BRAUN D, LIBCHABER A, et al. Applied Physics Letters, Protein detection by optical shift of a resonant microcavity. 2002, 80 (21): 4057- 4059. |
14 | KIPPENBERG T J, ROKHSARI H, CARMON T, et al. Physical Review Letters, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. 2005, 95 (3): 033901. |
15 | MA R, SCHLIESSER A, DEL’HAYE P, et al. Optics Letters, Radiation-pressure-driven vibrational modes in ultra-high-Q silica microspheres . 2007, 32 (15): 2200- 2202. |
16 | KIPPENBERG T J, VAHALA K J. Science, Cavity optomechanics: Back-action at the mesoscale. 2008, 321 (5893): 1172- 1176. |
17 | SCHLIESSER A, KIPPENBERG T J. Advances in Atomic, Molecular, and Optical Physics, Cavity optomechanics with whispering-gallery-mode optical micro-resonators. 2010, 58, 207- 323. |
18 | BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Physics Letters A, Quality-factor and nonlinear properties of optical whispering-gallery modes. 1989, 137 (7/8): 393- 397. |
19 | HONDA K, GARMIRE E, WILSON K. Journal of Lightwave Technology, Characteristics of an integrated optics ring resonator fabricated in glass. 1984, 2 (5): 714- 719. |
20 | ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Nature, Ultra-high-Q toroid microcavity on a chip . 2003, 421 (6926): 925- 928. |
21 | MOON H J, CHOUGH Y T, AN K. Physical Review Letters, Cylindrical microcavity laser based on the evanescent-wave-coupled gain. 2000, 85 (15): 3161- 3164. |
22 | COLLOT L, LEFèVRE-SEGUIN V, BRUNE M, et al. Europhysics Letters, Very high-Q whispering-gallery mode resonances observed on fused silica microspheres . 2007, 23 (5): 327- 334. |
23 | ILCHENKO V S, SAVCHENKOV A A, MATSKO A B, et al. Physical Review Letters, Nonlinear optics and crystalline whispering gallery mode cavities. 2004, 92 (4): 043903. |
24 | SAVCHENKOV A A, ILCHENKO V S, MATSKO A B, et al. Physical Review A, Kilohertz optical resonances in dielectric crystal cavities. 2004, 70 (5): 051804. |
25 | LI B B, WANG Q Y, YUN F X, et al. Applied Physics Letteres, On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator . 2010, 96 (25): 251109. |
26 | ZENINARI V, KAPITANOV V A, COURTOIS D, et al. Infrared Physics and Technology, Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection. 1999, 40 (1): 1- 23. |
27 | FANG N, XI D J, XU J Y, et al. Nature Materials, Ultrasonic metamaterials with negative modulus. 2006, 5 (6): 452- 456. |
28 | LEE S H, PARK C M, SEO Y M, et al. Physical Review Letters, Composite acoustic medium with simultaneously negative density and modulus. 2010, 104 (5): 054301. |
29 | SENIOR T B A. IEEE Transactions on Electromagnetic Compatibility, Electromagnetic field penetration into a cylindrical cavity. 1976, EMC-18 (2): 71- 73. |
30 | BONBARDT J N JR , LIBELO L F. The Scattering of electromagnetic radiation by apertures’ Ⅴ. Surface current, tangential aperture electric field, and back-scattering cross-section for the axially slotted cylinder at normal, symmetric incidence[R]. NASA STI/Recon Technical Report N, 1975. |
31 | NEGANOV V A, SARYCHEV A A. Journal of Communications Technology and Electronics, Diffraction of a plane electromagnetic wave by a circulardielectric cylinder with a finite-length perfectly conducting metal strip on the cylinder's lateral surface. 2008, 53 (11): 1315- 1322. |
32 | ZIOLKOWSKI R W, GRANT J B. IEEE Transactions on Antennas and Propagation, Scattering from cavity-backed apertures: The generalized dual series solution of the concentrically loadedE-pol slit cylinder problem. 1987, 35 (5): 504- 528. |
33 | JOHNSON W A, ZIOLKOWSKI R W. Radio Science, The scattering of an H-polarized plane wave from an axially slotted infinite cylinder: A dual series approach. 1984, 19 (1): 275- 291. |
/
〈 |
|
〉 |