Physics and Electronics

Theoretical simulations of the square potential barrier with a super-Gaussian beam

  • Jiaxin LI ,
  • Guangjiong DONG
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2020-04-08

  Online published: 2021-01-28

Abstract

The square potential barrier is an ideal model for investigation of quantum tunneling. We simulate the square potential barrier by using the dipole potential for the interaction between an atom and a blue-detuned far-off-resonant super-Gaussian beam, as well as the ponderomotive potential for the interaction between an electron and a super-Gaussian beam. A comparison between the numerical results for scattering by the super-Gaussian potential barrier and the analytical results for scattering by a square potential barrier shows that a super-Gaussian beam with an order exceeding 20 could simulate a square potential barrier accurately. We also show that two super-Gaussian beams could be used to study the resonant quantum tunneling effect. In summary, our results could be applied to an experimental investigation of quantum tunneling through a square potential barrier.

Cite this article

Jiaxin LI , Guangjiong DONG . Theoretical simulations of the square potential barrier with a super-Gaussian beam[J]. Journal of East China Normal University(Natural Science), 2021 , 2021(1) : 129 -136 . DOI: 10.3969/j.issn.1000-5641.202022008

References

1 HUND F. Zeitschrift für Physik, On the interpretation of molecular spectra. 1927, 43, 805- 811.
2 NORDHEIM L. Zeitschrift für Physik, Zur theorie der thermischen emission und der reflexion von elektronen an metallen. 1928, 46, 833- 855.
3 OPPENHEIMER J R. Physical Review, Three notes on the quantum theory of aperiodic effects. 1928, 31, 66- 81.
4 GAMOW G. Zeitschrift für Physik, Zur quantentheorie des atomkernes. 1928, 51 (3/4): 204- 212.
5 GURNEY R W, CONDON E U. Nature, Wave mechanics and radioactive disintegration. 1928, 122 (3073): 439- 439.
6 GURNEY R W, CONDON E U. Physical Review, Quantum mechanics and radioactive disintegration. 1929, 33 (2): 127- 140.
7 MILLIKAN R A, EYRING C F. Physical Review, Laws governing the pulling of electrons out of metals by intense electrical fields. 1926, 27 (1): 51- 67.
8 BüTTIKER M, IMRY Y, LANDAUER R, et al. Physical Review B, Generalized many-channel conductance formula with application to small rings. 1985, 31 (10): 6207- 6215.
9 BARDEEN J. Physical Review Letters, Tunnelling from a many-particle point of view. 1961, 6 (2): 57- 59.
10 ESAKI L. Physical Review, New phenomenon in narrow germanium P-N junctions. 1958, 109 (2): 603- 604.
11 BINNIG G, ROHRER H, GERBER C, et al. Physical Review Letters, Surface studies by scanning tunneling microscopy. 1982, 49 (1): 57- 61.
12 TERSOFF J, HAMANN D R. Physical Review Letters, Theory and application for the scanning tunneling microscope. 1983, 50 (25): 1998- 2001.
13 曾谨言. 量子力学(卷1) [M]. 2版. 北京: 北京大学出版社, 1998: 63-68.
14 OLKHOVSKY V S, RECAMI E. Physics Reports, Developments in the time analysis of tunneling processes. 1992, 214 (6): 339- 357.
15 OLKHOVSKY V S, RECAMI E, JAKIEL J. Physics Reports, Unified time analysis of photon and particle tunnelling. 2004, 398 (3): 133- 178.
16 SHAFIR D, SOIFER H, BRUNER B D, et al. Nature, Resolving the time when an electron exits a tunnelling barrier. 2012, 485 (7398): 343- 346.
17 LANDSMAN A S, KELLER U. Physics Reports, Attosecond science and the tunnelling time problem. 2015, 547 (5): 1- 24.
18 KWIAT P, STEINBERG A, CHIAO R. Physical Review Letters, Measurement of the single-photon tunneling time. 1993, 71 (5): 708- 711.
19 LANDAUER R, MARTIN T. Reviews of Modern Physics, Barrier interaction time in tunneling. 1994, 66 (1): 217- 228.
20 SPIELMANN C, SZIP?CS R, STINGL A, et al. Physical Review Letters, Tunneling of optical pulses through photonic band gaps. 1994, 73 (17): 2309- 2311.
21 TSU R, ESAKI L. Applied Physics Letters, Tunneling in a finite superlattice. 1973, 22 (11): 562- 565.
22 CHANG L L, ESAKI L, TSU R. Applied Physics Letters, Resonant tunneling in semiconductor double barriers. 1974, 24 (12): 593- 595.
23 SHEALY D L, HOFFNAGLE J A. Beam shaping profiles and propagation [C]// Proceedings SPIE 5876, Laser Beam Shaping VI. 2005: 58760D. DOI: 10.1117/12.619305.
24 DICKEY F M, WEICHMAN L S, SHAGAM R N. Laser beam shaping techniques [C]// Proceedings of the SPIE, Volume 4065 : High-Power Laser Ablation III. SPIE, 2000: 338-348.
25 CHEN H X, SUI Z, CHEN Z P, et al. Acta Optica Sinica, Laser beam shaping using liquid crystal spatial light modulator. 2001, 21 (9): 1107- 1111.
26 LIU J S, CHENG Q Y, YUE D G, et al. Laser Physics, Dynamical analysis of the effect of super-Gaussian laser pulses on molecular orientation. 2018, 28 (12): 1- 7.
27 SCHIFFER M, RAUNER M, KUPPENS S, et al. Applied Physics B, Guiding, focusing and cooling of atoms in a strong dipole potential. 1998, 67 (6): 705- 708.
28 KUPPENS S, RAUNER M, SCHIFFER M, et al. Physical Review A, Polarization-gradient cooling in a strong doughnut-mode dipole potential. 1998, 58 (4): 3068- 3079.
29 SILVESTRI S D, LAPORTA P, MAGNI V, et al. Optics Letters, Unstable laser resonators with super-Gaussian mirrors. 1988, 13 (3): 201- 203.
30 LIU J S, TAGHIZADEH M R. Optics Letters, Iterative algorithm for the design of diffractive phase elements for laser beam shaping. 2002, 27 (16): 1463- 1465.
31 LIU J S, CALEY A J, TAGHIZADEH M R. Optics Communications, Symmetrical iterative Fourier-transform algorithm using both phase and amplitude freedoms. 2006, 267 (2): 347- 355.
32 LIU J S, THOMSON M J, TAGHIZADEH M R. Journal of Modern Optics, Automatic symmetrical iterative Fourier-transform algorithm for the design of diffractive optical elements for highly precise laser beam shaping. 2006, 53 (4): 461- 471.
33 ZHAO Y, LI Y P, ZHOU Q G. Optics Letters, Vector iterative algorithm for the design of diffractive optical elements applied to uniform illumination. 2004, 29 (7): 664- 666.
34 林勇, 胡家升, 吴克难. 光学学报, 一种用于光束整形的衍射光学元件设计算法. 2007, 27 (9): 1682- 1686.
35 BéLANGER P A, LACHANCE R L, PARé C. Optics Letters, Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator . 1992, 17 (10): 739- 741.
36 DONG G J, EDVADSSON S, LU W, et al. Physical Review A, Super-Gaussian mirror for high-field-seeking molecules. 2005, 72 (3): 031605.
37 DUAN Z, FAN B, YUAN C H, et al. Physical Review A, Quantum tunneling time of a Bose-Einstein condensate traversing through a laser-induced potential barrier. 2010, 81 (5): 055602.
38 ZHOU L, ZHENG R F, ZHANG W. Physical Review A, Spin-sensitive atom mirror via spin-orbit interaction. 2016, 94 (5): 053630.
39 HARTEMANN F V, VAN METER J R, TROHA A L, et al. Physical Review E, Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. 1998, 58 (4): 5001- 5012.
40 STUPAKOV G V, ZOLOTOREV M S. Physical Review Letters, Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches. 2001, 86 (23): 5274- 5277.
41 FRIEDRICH B, HERSCHBACH D. Physical Review Letters, Alignment and trapping of molecules in intense laser fields. 1995, 74 (23): 4623- 4626.
42 刘盛纲. 强激光与粒子束, 自由电子激光的空间电荷波理论. 1990, (2): 131- 147.
43 张永德. 量子力学 [M]. 2版. 北京: 科学出版社, 2008: 55-59.
44 MATHEWS J H, FINK K K. Numerical methods using matlab: International edition [M]. [S.l]: Prentice-Hall Inc, 2004: 339.
45 LAI H M, CHAN S W. Optics Letters, Large and negative Goos–H?nchen shift near the Brewster dip on reflection from weakly absorbing media. 2002, 27 (9): 680- 682.
46 SHEN N H, CHEN J, WU Q Y, et al. Optics Express, Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium. 2006, 14 (22): 10574- 10579.
47 KAMI?SKI P, DRO?D? S, PLOSZAJCZAK M, et al. Physical Review C, Even-odd anomalous tunneling effect. 1993, 47 (4): 1548- 1552.
Outlines

/