Journal of East China Normal University(Natural Science) >
Research progress in Chinese named entity recognition in the financial field
Received date: 2021-08-17
Online published: 2021-09-28
As one of the basic components of natural language processing, named entity recognition (NER) has been an active area of research both domestically in China and abroad. With the rapid development of financial applications, Chinese NER has improved over time and been applied successfully throughout the financial industry. This paper provides a summary of the current state of research and future development trends for Chinese NER methods in the financial field. Firstly, the paper introduces concepts related to NER and the characteristics of Chinese NER in the financial field. Then, based on the development process, the paper provides an overview of detailed characteristics and typical models for dictionary and rule-based methods, statistical machine learning-based methods, and deep learning-based methods. Next, the paper summarizes public data collection tools, evaluation methods, and applications of Chinese NER in the financial industry. Finally, the paper explores current challenges and future development trends.
Qiurong XU , Peng ZHU , Yifeng LUO , Qiwen DONG . Research progress in Chinese named entity recognition in the financial field[J]. Journal of East China Normal University(Natural Science), 2021 , 2021(5) : 1 -13 . DOI: 10.3969/j.issn.1000-5641.2021.05.001
1 | RAU L F. Extracting company names from text[C]// Proceedings of the Seventh IEEE Conference on Artificial Intelligence Application. IEEE, 1991. |
2 | 宗成庆. 统计自然语言处理[M]. 2版. 北京: 清华大学出版社, 2013: 510-512. |
3 | 巴曙松, 白海峰. 金融科技的发展历程与核心技术应用场景探索. 清华金融评论, 2016, (11): 99- 103. |
4 | LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition [EB/OL]. (2020-03-18)[2021-09-22]. https://arxiv.org/pdf/1812.09449.pdf. |
5 | 李嘉欣, 王平. 中文命名实体识别研究方法综述. 计算机时代, 2021, (4): 18- 21. |
6 | NADEAU D, SEKINE S. A survey of named entity recognition and classification. Lingvisticae Investigationes, 2007, 30 (1): 3- 26. |
7 | SHARNAGAT R. Named entity recognition: A literature survey [EB/OL]. (2014-06-30)[2021-09-22]. https://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf. |
8 | KATIYAR A, CARDIE C. Nested named entity recognition revisited [C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1. New Orleans, Louisiana: Association for Computational Linguistics, 2018: 861-871. |
9 | LING X, WELD D. Fine-grained entity recognition [C]//Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. California: AAAI Press, 2012: 94-100. |
10 | 王宁, 葛瑞芳, 苑春法, 等. 中文金融新闻中公司名的识别. 中文信息学报, 2002, 16 (2): 1- 6. |
11 | 沈嘉懿, 李芳, 徐飞玉, 等. 中文组织机构名称与简称的识别. 中文信息学报, 2007, 21 (6): 17- 21. |
12 | XU Z, BURDICK D, RASCHID L. Exploiting lists of names for named entity identification of financial institutions from unstructured documents [EB/OL]. (2016-06-07)[2021-09-22]. https://arxiv.org/pdf/1602.04427.pdf. |
13 | BURDICK D, DE S, RASCHID L, et al. resMBS: Constructing a financial supply chain from prospectus [C]//Proceedings of the Second International Workshop on Data Science for Macro-Modeling. 2016: 1-6. |
14 | EDDY S R. Hidden markov models. Current Opinion in Structural Biology, 1996, 6 (3): 361- 365. |
15 | KAPUR J N. Maximum-entropy models in science and engineering. International Biometric Society, 1992, 48 (1): 333- 334. |
16 | HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines. IEEE Intelligent Systems and Their Applications, 1998, 13 (4): 18- 28. |
17 | LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data [C]//Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2001: 282-289. |
18 | QUINLAN J R. Induction of decision trees. Machine Learning, 1986, 1 (1): 81- 106. |
19 | SHEN J Y, LI F, XU F Y, et al. Recognition of chinese organization names and abbreviations. Journal of Chinese Information Processing, 2007, 21 (6): 17- 21. |
20 | KASS R E, RAFTERY A E. Bayes factors. Journal of the American Statistical Association, 1995, 90 (430): 773- 795. |
21 | WANG S, XU R, LIU B, et al. Financial named entity recognition based on conditional random fields and information entropy [C]//2014 International Conference on Machine Learning and Cybernetics. Lanzhou: IEEE, 2014: 838-843. |
22 | Nú?EZ J A, CINCOTTA P M, WACHLIN F C. Information entropy. Celestial Mechanics and Dynamical Astronomy, 1996, 64, 43- 53. |
23 | BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model. The Journal of Machine Learning Research, 2003, (3): 1137- 1155. |
24 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [EB/OL]. (2013-09-07)[2021-09-22]. https://arxiv.org/pdf/1301.3781.pdf. |
25 | JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification [EB/OL]. (2016-08-09)[2021-08-19]. https://arxiv.org/pdf/1607.01759.pdf. |
26 | PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation [C]//EMNLP. 2014: 1532-1543. |
27 | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations [EB/OL]. (2018-03-22)[2021-08-26]. https://arxiv.org/pdf/1802.05365.pdf. |
28 | RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. [2021-08-26]. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf. |
29 | DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2019-05-24)[2021-08-26]. https://arxiv.org/pdf/1810.04805.pdf. |
30 | YANG Z, DAI Z, YANG Y, et al. XLNet: Generalized autoregressive pretraining for language understanding[J]. Advances in Neural Information Processing Systems, 2019, 32: 5753-5763. |
31 | SUN Y, WANG S, LI Y, et al. ERNIE: Enhanced representation through knowledge integration [EB/OL]. (2019-04-19)[2021-08-26]. https://arxiv.org/abs/1904.09223. |
32 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25, 1097- 1105. |
33 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. (2016-04-30)[2021-08-26]. https://arxiv.org/pdf/1511.07122.pdf. |
34 | ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization [EB/OL]. (2015-02-19)[2021-08-26]. https://arxiv.org/pdf/1409.2329.pdf. |
35 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780. |
36 | HUANG Z, XU W, YU K. Bidirectional lstm-crf models for sequence tagging [EB/OL]. (2015-08-09)[2021-08-26]. https://arxiv.org/pdf/1508.01991.pdf. |
37 | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2021-08-26]. https://arxiv.org/pdf/1412.3555v1.pdf. |
38 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010. |
39 | SHEN Y, YUN H, LIPTON Z C, et al. Deep active learning for named entity recognition [EB/OL]. (2018-02-04)[2021-08-26]. https://arxiv.org/pdf/1707.05928.pdf. |
40 | 李昱昕. 特定领域知识图谱的自动构建方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018. |
41 | 彭小钰. 面向金融领域的命名实体识别算法的设计与实现 [D]. 武汉: 华中科技大学, 2019. |
42 | LIU Y. Named entity recognition using a semi-supervised model based on bert and bootstrapping [C]// Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence, 5th China Conference, CCKS 2020. 2021: 54-63. |
43 | 刘宇瀚, 刘常健, 徐睿峰, 等. 结合字形特征与迭代学习的金融领域命名实体识别. 中文信息学报, 2020, 34 (11): 74- 83. |
44 | ZHOU Z, ZHANG H. Research on entity relationship extraction in financial and economic field based on deep learning [C]// IEEE 4th International Conference on Computer and Communications. 2018: 2430-2435. |
45 | ZHAO L, LI L, ZHENG X. A bert based sentiment analysis and key entity detection approach for online financial texts [EB/OL]. (2020-01-14)[2021-08-26]. https://arxiv.org/abs/2001.05326. |
46 | LIU Z, HUANG D, HUANG K, et al. Finbert: A pre-trained financial language representation model for financial text mining [C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. 2020: 5-10. |
47 | YANG H, CHEN Y, LIU K, et al. Dcfee: A document-level chinese financial event extraction system based on automatically labeled training data [C]// Proceedings of ACL 2018, System Demonstrations. 2018: 50-55. |
48 | 赵军. 知识图谱 [M]. 北京: 高等教育出版社, 2018: 2-10. |
49 | 陈晓军, 向阳. 企业风险知识图谱的构建及应用. 计算机科学, 2020, 47 (11): 237- 243. |
50 | 吕华揆, 洪亮, 马费成. 金融股权知识图谱构建与应用. 数据分析与知识发现, 2020, 4 (5): 27- 37. |
51 | CHENG D, YANG F, WANG X, et al. Knowledge graph-based event embedding framework for financial quantitative investments [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 2221-2230. |
52 | FAN M, CHENG D, YANG F, et al. Fusing global domain information and local semantic information to classify financial documents [C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 2413-2420. |
53 | RUDER S. An overview of multi-task learning in deep neural networks [EB/OL]. (2017-06-15)[2021-08-26]. https://arxiv.org/pdf/1706.05098.pdf. |
/
〈 |
|
〉 |