Journal of East China Normal University(Natural Science) >
The structure of 3-Lie-Rinehart algebras
Received date: 2020-04-01
Online published: 2021-11-26
In this paper, we introduce a class of 3-ary algebras, called the 3-Lie-Rinehart algebra, and we discuss the basic structure thereof. The 3-Lie-Rinehart algebras are constructed using 3-ary differentiable functions, modules of known 3-Lie algebras, and inner derivatives of 3-Lie algebras.
Ruipu BAI , Xiaojuan LI . The structure of 3-Lie-Rinehart algebras[J]. Journal of East China Normal University(Natural Science), 2021 , 2021(6) : 15 -23 . DOI: 10.3969/j.issn.1000-5641.2021.06.002
1 | HERZ J C. Pseudo-algèbres de Lie, I, II. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 1953, 236, 1935- 1937. |
2 | PALAIS R S. The cohomology of Lie rings. Proceedings of the Symposium in Pure Mathematic, 1961, (3): 130- 137. |
3 | RINEHART G S. Differential forms on general commutative algebras. Transactions of the American Mathematical Society, 1963, 108 (2): 195- 222. |
4 | HUEBSCHMANN J. Lie-Rinehart algebras, Gerstenhaber algebras, and B-V algebras. Annales de L Institut Fourier, 1997, 48 (2): 425- 440. |
5 | HUEBSCHMANN J. Poisson cohomology and quantization. Journal für die Reine und Angewandte Mathematik, 1990, 408, 57- 113. |
6 | HUEBSCHMANN J. Duality for Lie-Rinehart algebras and the modular class. Journal für die Reine und Angewandte Mathematik, 1999, 510, 103- 159. |
7 | HUEBSCHMANN J. Lie-Rinehart algebras, descent, and quantization. Mathematics, 2003, 43 (1): 295- 316. |
8 | MANDAL A, MISHRA S. Hom-Lie-Rinehart algebras. Communications in Algebra, 2016, 46 (9): 3722- 3744. |
9 | CASTIGLIONI J L, GRCIA-MARTINEZ X, LADRA M. Universal central extensions of Lie-Rinehart algebras. Journal of Algebra and Its Applications, 2018, 17 (7): 1850134. |
10 | BAI R P, LI Z H, WANG W D. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules. Frontiers of Mathematics in China, 2017, 12 (3): 515- 530. |
11 | BAI C M, GUO L, SHENG Y H. Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras. Advances in Theoretical and Mathematical Physics, 2019, 23 (1): 27- 74. |
12 | BAI R P, MA Y. Modules and induced modules of 3-Lie algebra $A_{\omega}^{\delta}$[J]. Journal of East China Normal University (Natural Science), 2021(3): 8-16. |
13 | MCKENZIE K. Lie Groupoids and Lie Algebroids in Differential Geometry [M]. Cambridge: Cambridge University Press, 1987. |
14 | PAPADOPOULOS G. M2-branes, 3-Lie algebras and Plücker relations. Journal of High Energy Physics, 2008, (5): 645- 677. |
15 | BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes. Physical Review D, 2008, 77 (6): 215- 240. |
16 | FILIPPOV V T. n-Lie algebras . Siberian Mathematical Journal, 1985, 26 (6): 879- 891. |
17 | KASYMOV S M. Theory of n-Lie algebras . Algebra and Logic, 1987, 26 (3): 155- 166. |
18 | CASAS J M, BOKUT L. Obstructions to Lie-Rinehart algebra extensions. Algebra Colloquium, 2011, 18 (1): 83- 104. |
/
〈 |
|
〉 |