Geography

Quick estimation of three-dimensional vegetation volume based on images from an unmanned aerial vehicle: A case study on Shanghai Botanical Garden

  • Jiabei LUO ,
  • Yingfei ZHOU ,
  • Hanbing LENG ,
  • Chen MENG ,
  • Zhengyang HOU ,
  • Tongtong SONG ,
  • Zhengyun HU ,
  • Chao ZHANG ,
  • Shucheng FENG
Expand
  • 1. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
    2. Shanghai Urban Plant Resources Development and Application Engineering Technology Research Center, Shanghai Botanical Garden, Shanghai 200231, China
    3. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    4. College of Forestry, Beijing Forestry University, Beijing 100083, China
    5. The Joint Laboratory for Environmental Remote Sensing and Data Assimilation, East China Normal University, Shanghai 200241, China

Received date: 2020-11-23

  Online published: 2022-01-18

Abstract

Three-dimensional vegetation volume is a comprehensive index that can be used to represent the ecological benefits of urban vegetation. However, the challenge of how to accurately and quickly carry out three-dimensional vegetation volume monitoring in highly heterogeneous urban habitats is an urgent problem that requires attention. In this paper, we used Shanghai Botanical Garden as a case study. We acquired low-altitude, high-resolution images of Shanghai Botanical Garden through a UAV aerial photography system; after extracting the data, we calculated the surface elevation and canopy height models, estimated the three-dimensional vegetation volume, and analyzed the spatial distribution pattern. The results showed that: ① The overall plane and elevation accuracy of UAV images was better than 0.1 m, and the average error and standard deviation of the canopy height model accuracy was 0.27 m and 0.58 m, respectively. ② The vegetation volume of Shanghai Botanical Garden was distributed in a pattern from northeast low to southwest high, with a total vegetation volume of 3538944.50 m3. The average green density of the botanical garden was 6.51 m3/m2. The three gardens with the highest vegetation volume were: Peony Garden (289491.00 m3), Pinetum Garden (338322.10 m3), and the Green Space Attached to The Greenhouse (360587.50 m3). The three gardens with the lowest vegetation volume were: Recreational Green Space (24761.50 m3), Monocotyledon Botanical Garden (31621.40 m3), and Rose Garden (74607.30 m3). The three gardens with the highest vegetation volume density were: Tropical Orchid Room (9.23 m3/m2), Fern Garden (11.30 m3/m2), and Magnolia and Camphor Avenue (13.11 m3/m2). The three gardens with the lowest vegetation volume density were Recreational Green Space (1.57 m3/m2), Scientific Research Center Green Space (1.81 m3/m2), and Rose Garden (2.58 m3/m2). ③ The vegetation volume of each specialized garden was significantly related to the distribution area of the arbor community, the height of the constructive species, and the product thereof. The vegetation volume density of each specialized garden was significantly related to the proportion of the area of the arbor community in the specialized garden, the height of the constructive species, and the product thereof. This research can serve as a methodology reference for the quick estimation of urban vegetation volume, and provide basic data vegetation volume estimates and spatial pattern optimization for Shanghai Botanical Garden.

Cite this article

Jiabei LUO , Yingfei ZHOU , Hanbing LENG , Chen MENG , Zhengyang HOU , Tongtong SONG , Zhengyun HU , Chao ZHANG , Shucheng FENG . Quick estimation of three-dimensional vegetation volume based on images from an unmanned aerial vehicle: A case study on Shanghai Botanical Garden[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(1) : 122 -134 . DOI: 10.3969/j.issn.1000-5641.2022.01.014

References

1 闫慧杰. 植被在城市生态中的主要功能探究. 科技经济导刊, 2019, 27 (21): 103.
2 程安祺, INOSTROZA L. 城市破碎绿化覆盖与热环境的关系——以德国波鸿市为例. 中国城市林业, 2019, 17 (6): 18- 24.
3 尹沛卓. 城市绿地率与绿化覆盖率相关性量化研究 [D]. 济南: 山东建筑大学, 2019.
4 刘洋洋, 章钊颖, 同琳静, 等. 中国草地净初级生产力时空格局及其影响因素. 生态学杂志, 2020, 39 (2): 349- 363.
5 CHEN S L, JIANG H, CHEN Y, et al. Spatial-temporal patterns of net primary production in Anji (China) between 1984 and 2014. Ecological Indicators, 2020, 110, 105954.
6 TRLICA A, HUTYRA L R, MORREALE L L, et al. Current and future biomass carbon uptake in Boston's urban forest. Science of the Total Environment, 2020, 709, 136196.
7 ERIK V, CHEN K W. Carbon storage estimation of tropical urban trees by an improved allometric model for aboveground biomass based on terrestrial laser scanning. Urban Forestry & Urban Greening, 2019, 44, 126387.
8 周坚华. 城市绿量测算模式及信息系统. 地理学报, 2001, 56 (1): 14- 23.
9 周一凡, 周坚华. 绿量快速测算模式. 生态学报, 2006, 26 (12): 4204- 4211.
10 李伟, 贾宝全, 王成, 等. 城市森林三维绿量研究现状与展望. 世界林业研究, 2008, (4): 31- 34.
11 ZHOU J H, QIN J, GAO K, et al. SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery. International journal of remote sensing, 2016, 37 (11): 2541- 2559.
12 周一凡, 周坚华. 基于绿化三维量的城市生态环境评价系统. 中国园林, 2001, 17 (5): 77- 79.
13 ANDERSON K, HANCOCK S, CASALEGNO S, et al. Visualising the urban green volume: Exploring LiDAR voxels with tangible technologies and virtual models. Landscape and Urban Planning, 2018, 178, 248- 260.
14 ZHOU J, HUANG Y, YU B. Mapping vegetation-covered urban surfaces using seeded region growing in Visible-NIR air photos. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8 (5): 2212- 2221.
15 ONG B L. Green plot ratio: An ecological measure for architecture and urban planning. Chinese Landscape Architecture, 2006, 63 (4): 197- 211.
16 王婷婷, 杨学军, 胡松竹, 等. 绿量测算方法比较研究. 中国城市林业, 2010, 8 (4): 36- 38.
17 周一凡, 周坚华. 基于绿化三维量的城市生态环境评价系统. 中国园林, 2001, (5): 78- 80.
18 周坚华, 孙天纵. 三维绿色生物量的遥感模式研究与绿化环境效益估算. 环境遥感, 1995, (3): 162- 174.
19 李祥军, 赵玺, 姜珊, 等. 佳木斯大学校园植物三维绿量的测算. 北方农业学报, 2016, 44 (2): 52- 56.
20 陈宇, 童俊, 姚崇怀. 浅谈国内外三维绿量的研究进展. 国土绿化, 2015, (3): 43- 44.
21 孙克红. 基于Landsat 8卫星影像数据的城市绿量估算研究. 西部大开发(土地开发工程研究), 2019, 4 (2): 6- 10.
22 孙营伟. 基于高分2号遥感数据的三维绿量估算模型研究 [D]. 北京: 中国地质大学(北京), 2017.
23 易扬, 张桂莲, 张浪, 等. 基于高分二号遥感影像的城市植被三维绿量研究. 园林, 2020, (11): 2- 7.
24 陈小祥, 李嘉诚, 徐雅莉. 基于LiDAR点云数据的城市三维绿量分层测算方法研究. 测绘工程, 2018, 27 (9): 40- 45.
25 周雯慧. 基于无人机遥感技术的沈阳某高校三维绿量定量化研究 [D]. 沈阳: 沈阳航空航天大学, 2018.
26 上海市人民政府. 《上海市城市总体规划(2017—2035年)》报告 [EB/OL]. (2018-01-17)[2021-10-22]. www. shanghai. gov. cn/nw42806/.
27 冯代丽, 刘艳红, 王斐, 等. 基于三维绿量的城市绿地生态效益评价综述. 中国农学通报, 2017, 33 (6): 129- 133.
28 ZHENG S J, MENG C, XUE J H, et al. UAV-based spatial patterns of three-dimensional green volume and its influencing factors in the Lingang New City in Shanghai, China [J]. Frontiers of Earth Sciences, 2021. DOI: 10.1007/s11707-021-0896-7.
29 潘蓉婷, 朱晓晔, 曲晓涵, 等. 东北典型校园绿地三维绿量研究. 农家参谋, 2020, 17, 158.
30 LI F X, LI M, FENG X G. High-precision method for estimating the three-dimensional green quantity of an urban forest. Journal of the Indian Society of Remote Sensing, 2021, 49, 1407- 1417.
Outlines

/