Phisics and Electronic Science

Yolk-shell silicon anode material coated with nitrogen-doped carbon

  • Kaijing BAO ,
  • Zhaokai ZHANG ,
  • Xianqing PIAO ,
  • Zhuo SUN
Expand
  • Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2021-01-08

  Online published: 2022-01-18

Abstract

Using resorcinol-formaldehyde resin as the carbon source, melamine as the nitrogen source, and NaOH as the etchant, a nitrogen-doped carbon-coated silicon (Si@void@N-C) anode material with a yolk-shell structure was synthesized. The samples were characterized and tested by XRD, SEM and X-ray photoelectron spectroscopy, TEM, and electrochemical tests; the results confirmed that a Si@void@NC composite anode material with a yolk-shell structure was successfully synthesized. The material was found to have excellent electrochemical performance. The initial capacity reached 1282.3 mA/g after charging and discharging at a current density of 0.1 A/g. After 100 cycles, its specific capacity was as high as 994.2 mAh/g with a capacity retention of 77.5%, demonstrating good cycle performance. The nitrogen-doped carbon shell of the Si@void@N-C material helps with the electrical conductivity of the composite material. Meanwhile, the yolk-shell structure effectively alleviates the volume effect of silicon; this feature is beneficial to the formation of a stable SEI film and improves the cycle stability of the battery.

Cite this article

Kaijing BAO , Zhaokai ZHANG , Xianqing PIAO , Zhuo SUN . Yolk-shell silicon anode material coated with nitrogen-doped carbon[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(1) : 22 -30 . DOI: 10.3969/j.issn.1000-5641.2022.01.004

References

1 RUFFO R, HONG S S, CHAN C K, et al. Impedance analysis of silicon nanowire lithium-ion battery anodes. The Journal of Physical Chemistry C, 2009, 113 (26): 11390- 11398.
2 WU J, MA F, LIU X, et al. Recent progress in advanced characterization methods for silicon-based lithium-ion batteries. Small Methods, 2019, 3 (10): 1900158.
3 WANG J, TANG H, ZHANG L, et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, (1): 1- 9.
4 LIAO D, KUANG X, XIANG J, et al. A silicon anode material with layered structure for the lithium-ion battery. Journal of Physics Conference Series, 2018, 986 (1): 12- 24.
5 KIM Y Y, LEE J H, KIM H J. Nanoporous silicon flakes as anode active material for lithium-ion batteries. Physica E: Low-dimensional Systems and Nanostructures, 2017 85, 223- 226.
6 XIAO J, XU W, WANG D, et al. Stabilization of silicon anode for Li-ion batteries. Journal of The Electrochemical Society, 2010, 157 (10): A1047- A1051.
7 MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes USING a hierarchical bottom-up approach. Nature Materials, 2010, (9): 353- 358.
8 DU F, WANG K, CHEN J. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. Journal of Materials Chemistry, 2016, (A4): 32- 50.
9 YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, (11): 2949- 2954.
10 PARK M H, KIM G, JOO J, et al. Silicon nanotube battery anodes. Nano Letters, 2009, 9 (11): 3844- 3847.
11 EPUR R, HANUMANTHA P J, DATTA M K, et al. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. Journal of Materials Chemistry A, 2015, 3 (20): 11117- 11129.
12 WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnology, 2012, 7 (5): 310- 315.
13 XING Y, ZHANG L, MAO S, et al. Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Materials Research Bulletin, 2018 108, 170- 175.
14 AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Communications, 2019, 10 (1): 1447- 1452.
15 LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 2012, 12 (6): 3315- 3321.
16 ZHANG L, RANJUSHA R, GUO H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Advanced Functional Materials, 2016, 26 (3): 440- 446.
17 CHEN L F, ZHANG X D, LIANG H W, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 2012, (6): 7092- 7102.
18 INAGAKI M, KONNO H, TANAIKE O. Carbon materials for electrochemical capacitors. Power Sources, 2010, 195, 7880- 7903.
19 PODYACHEVA O Y, CHEREPANOVA S V, ROMANENKO A I, et al. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon, 2017, 122, 475- 483.
20 JIN N, SU Z, YUE N, et al. Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@graphene nanosheets as high performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3 (39): 19892- 19900.
21 CHEN Y, SHI L, GUO S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. Journal of Materials Chemistry A, 2017, (5): 19866- 19874.
22 SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. Acs Nano, 2011, 5 (6): 4350- 4358.
23 ZHOU X S, YIN Y X, WAN L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Advanced Energy Materials, 2012, (11): 1086- 1090.
24 WANG B, LI X, ZHANG X, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium-ion battery anodes. Acs Nano, 2013, 7 (2): 1437- 1445.
25 YANG S, SONG H, CHEN X. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochemistry Communications, 2006, 8 (1): 137- 142.
Outlines

/