Physics and Electronics

First-principles calculations investigations of two-dimensional transition metal phosphide MnTn+1(M = V, Cr; T = P, As, and Sb) slices

  • Yaqiong ZHANG ,
  • Wenhui XIE
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-12-17

  Online published: 2022-03-28

Abstract

In this paper, the atomic structure, stability, electronic structure, and magnetism of two-dimensional transition metal phosphide MnTn+1 (M = V, Cr; T = P, As, and Sb) slices were systematically studied using the first-principles calculations based on density functional theory. By calculating the formation energy and phonon spectrum, it was determined that only V4As5, Cr2P3, Cr3P4, Cr4P5, Cr2As3, and Cr3As4 are stable two-dimensional magnetic multilayers. The results show that these stable two-dimensional magnetic materials are antiferromagnetic metals. In addition, the electronic structure and the magnetic coupling mechanism of these materials were further analyzed.

Cite this article

Yaqiong ZHANG , Wenhui XIE . First-principles calculations investigations of two-dimensional transition metal phosphide MnTn+1(M = V, Cr; T = P, As, and Sb) slices[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(2) : 84 -92 . DOI: 10.3969/j.issn.1000-5641.2022.02.010

References

1 GONG C, LI L, LI Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546 (7657): 265- 269.
2 HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546 (7657): 270- 273.
3 O’HARA D. J, ZHU T C, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Letters, 2018, 18 (5): 3125- 3131.
4 BONILLA M, KOLEKAR S, MA Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates . Nature Nanotechnol., 2018, 13 (4): 289- 293.
5 LI J, ZHAO B, CHEN P, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates . Advanced Materials, 2018, 30 (36): 1801043.
6 SUN X, LI W Y, WANG X, et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Research, 2020, 13 (12): 3358- 3363.
7 HUANG B, CLARK G, KLEIN D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nature Nanotechnology, 2018, 13 (7): 544- 548.
8 JIANG S, LI L Z, WANG Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping . Nature Nanotechnology, 2018, 13 (7): 549- 553.
9 LIU H, WANG X S, WU J X, et al. Vapor deposition of magnetic van der Waals NiI2 crystals . ACS Nano, 2020, 14 (8): 10544- 10551.
10 LIU Y, WANG W, LU H Y, et al. The environmental stability characterization of exfoliated few-layer CrXTe3 (X=Si, Ge) nanosheets . Applied Surface Science, 2020, (511): 145452.
11 DENG Y, YU Y J, SONG Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563 (7729): 94- 99.
12 KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23 (17): 2185- 2192.
13 KUMAR H, FREY N C, DONG L, et al. Tunable magnetism and transport properties in nitride MXenes. ACS Nano, 2017, 11 (8): 7648- 7655.
14 HU Y, LIU X Y, SHEN Z H, et al. High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 2020, 12 (21): 11627- 11637.
15 WANG B, ZHANG Y H, MA L, et al. MnX (X = P, As) monolayers a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy . Nanoscale, 2019, 11 (10): 4204- 4209.
16 MOGULKOC A, MODARRESI M, RUDENKO A N. Two-dimensional chromium pnictides CrX(X= P, As, Sb): Half-metallic ferromagnets with high Curie temperature . Physical Review B, 2020, 102 (2): 024441.
17 WU Q, ZHANG Y H, ZHOU Q H, et al. Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity. Journal of Physical Chemistry Letters, 2018, 9 (15): 4260- 4266.
18 ZHU Y, KONG X H, RHONE T D, et al. Systematic search for two-dimensional ferromagnetic materials. Physical Review Materials, 2018, 2 (8): 081001.
19 LU S, ZHOU Q H, GUO Y L, et al. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals. Advanced Materials, 2020, 32 (29): 2002658.
20 JIANG P, WANG C, CHEN D C, et al. Stacking tunable interlayer magnetism in bilayer CrI3. Physical Review B, 2019, 99 (14): 144401.
21 WANG C, ZHOU X Y, ZHOU L W, et al. Bethe-Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Physical Review B, 2020, 102 (2): 020402.
22 MAY A F, OVCHINNIKOV D, ZHENG Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano, 2019, 13 (4): 4436- 4442.
23 KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, (54): 11169- 11186.
24 PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78 (7): 1396- 1396.
25 DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study . Physical Review B, 1998, 57 (3): 1505- 1509.
26 ANISIMOV V V, ZAANEN J, ANDERSEN O K. Band theory and mott insulators: Hubbard U instead of stoner I . Physical Review B, 1991, 44 (3): 943- 954.
27 LI X, YANG J. CrXTe3(X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors . Journal of Materials Chemistry C, 2014, 2 (34): 7071- 7076.
28 DONG L, KUMAR H, ANASORI B, et al. Rational design of two-dimensional metallic and semiconducting spintronic materials based on ordered double-transition-metal MXenes. Journal of Physical Chemistry Letters, 2017, 8 (2): 422- 428.
29 MONKHORST H J, PACK J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13 (12): 5188- 5192.
30 TOGO A, TANAKA I. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108, 1- 5.
31 BARONI S, GIRONCOLI S D, CORSO A D, et al. Phonons and related properties of extended systems from density functional perturbation theory. Review of Modern Physics, 2001, (73): 515- 562.
32 GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Physical Review, 1955, 100 (2): 564- 573.
33 ANDERSON P W. New approach to the theory of superexchange interactions. Physical Review, 1959, 115 (1): 2- 13.
Outlines

/