Physics and Electronics

Optically mediated entanglement between Bose-Einstein condensates

  • Shuai GAO ,
  • Matthew PREST ,
  • Ebubechukwu O. ILO-OKEKE ,
  • Manikandan KONDAPPAN ,
  • Juan E. ARISTIZABAL-ZULUAGA ,
  • Valentin IVANNIKOV ,
  • Tim BYRNES
Expand
  • 1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    2. Department of Physics, New York University Shanghai, Shanghai 200122, China
    3. Department of Physics, School of Science, Federal University of Technology, Imo State 460001, Nigeria
    4. Department of Precision Science and Natural Sciences, Institute of Physics, Universidad de Antioquia UdeA, Medellín 05001000, Colombia
    5. NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
    6. National Institute of Informatics, Tokyo 101-8430, Japan
    7. Department of Physics, New York University, New York, NY 10003, USA

Received date: 2021-02-19

  Online published: 2022-03-28

Abstract

This paper explores a method for generating optically mediated entanglement between Bose-Einstein condensates (BECs). Using a quantum nondemolition Hamiltonian with BECs placed in a Mach-Zehnder configuration, it is shown that entangled states can be induced by performing measurement on light. In particular, the effects of the entangled state in the presence of decoherence were analyzed. The behavior of the entangled state was found to be sensitive to the atom-light interaction time. The entangled state is relatively stable when the dimensionless interaction time $ \tau \lesssim \frac{1}{\sqrt{N}} $ and relatively fragile when the time is greater.

Cite this article

Shuai GAO , Matthew PREST , Ebubechukwu O. ILO-OKEKE , Manikandan KONDAPPAN , Juan E. ARISTIZABAL-ZULUAGA , Valentin IVANNIKOV , Tim BYRNES . Optically mediated entanglement between Bose-Einstein condensates[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(2) : 93 -105 . DOI: 10.3969/j.issn.1000-5641.2022.02.011

References

1 NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information [M]. 10th Anniversary ed. [S.l.]: Cambridge University Press, 2011.
2 HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement. Reviews of Modern Physics, 2009, 81 (2): 865.
3 BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, 70 (13): 1895- 1899.
4 EKERT A K. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 1991, 67 (6): 661.
5 BYRNES T, ROSSEAU D, KHOSLA M, et al. Macroscopic quantum information processing using spin coherent states. Optics Communications, 2015, 337, 102- 109.
6 BYRNES T, WEN K, YAMAMOTO Y. Macroscopic quantum computation using Bose-Einstein condensates. Physical Review A, 2012, 85 (4): 4233- 4237.
7 GROVER L K. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997, 79 (2): 325.
8 FADEL M, ZIBOLD T, DéCAMPS B, et al. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science, 2018, 360 (6387): 409- 413.
9 KUNKEL P, PRüFER M, STROBEL H, et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 2018, 360 (6387): 413- 416.
10 LANGE K, PEISE J, LüCKE B, et al. Entanglement between two spatially separated atomic modes. Science, 2018, 360 (6387): 416- 418.
11 BYRNES T, ILO-OKEKE E O. Quantum Atom Optics: Theory and Applications to Quantum Technology [M]. [S.l.]: Cambridge University Press, 2021.
12 GROSS C. Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates [J]. Journal of Physics B, 2012, 45(10): 103001.
13 S?RENSEN A, DUAN L M, CIRAC J I, et al. Many-particle entanglement with Bose–Einstein condensates. Nature, 2001, 409 (6816): 63- 66.
14 MACHIDA S, YAMAMOTO Y, ITAYA Y. Observation of amplitude squeezing in a constant-current–driven semiconductor laser. Physical Review Letters, 1987, 58 (10): 1000- 1003.
15 WU L A, KIMBLE H J, HALL J L, et al. Generation of squeezed states by parametric down conversion. Physical Review Letters, 1986, 57 (20): 2520- 2523.
16 SLUSHER R E, HOLLBERG L W, YURKE B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters, 1985, 55 (22): 2409- 2412.
17 BREITENBACH G, SCHILLER S, MLYNEK J. Measurement of the quantum states of squeezed light. Nature, 1997, 387 (6632): 471- 475.
18 MACOMBER J D, LYNCH R. Squeezed spin states. The Journal of Chemical Physics, 1985, 83 (12): 6514- 6519.
19 WALLS D F, ZOLLER P. Reduced quantum fluctuations in resonance fluorescence. Physical Review Letters, 1981, 47 (10): 709- 711.
20 WODKIEWICZ K, EBERLY J H. Coherent states, squeezed fluctuations, and the SU(2) am SU(1,1) groups in quantum-optics applications. Journal of the Optical Society of America B, 1985, 2 (3): 458- 466.
21 KITAGAWA M, UEDA M. Squeezed spin states. Physical Review A, 1993, 47 (6): 5138- 5143.
22 MUESSEL W, STROBEL H, LINNEMANN D, et al. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Physical Review Letters, 2014, 113 (10): 103004.
23 HALD J, S?RENSEN J L, SCHORI C, et al. Spin squeezed atoms: A macroscopic entangled ensemble created by light. Physical Review Letters, 1999, 83 (7): 1319- 1322.
24 NAVARRETE-BENLLOCH C . Quantum information with continuous variables [M]// An Introduction to the Formalism of Quantum Information with Continuous Variables. [S.l]:[s.n.], 2015.
25 MOXLEY F, DOWLING J, DAI W, et al. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates. Physical Review A, 2016, 93, 053603.
26 HILLERY M. Quantum cryptography with squeezed states. Physical Review A, 2000, 61 (2): 022309.
27 BONDURANT R S, SHAPIRO J H. Squeezed states in phase-sensing interferometers. Physical Review D Particles & Fields, 1984, 30 (12): 2548- 2556.
28 BREUER H P, PETRUCCIONE F. The Theory of Open Quantum Systems [M]. [S.l.]: Oxford University Press, 2002.
29 REICHEL J, VULETIC V. Atom Chips [M]. [S.l.]: John Wiley & Sons, 2011.
30 WHITLOCK S, GERRITSMA R, FERNHOLZ T, et al. Two-dimensional array of microtraps with atomic shift register on a chip. New Journal of Physics, 2009, 11 (2): 023021.
31 ABDELRAHMAN A, MUKAI T, H?FFNER H, et al. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps. Optics Express, 2014, 22 (3): 3501- 3513.
32 B?HI P, RIEDEL M F, HOFFROGGE J, et al. Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nature Physics, 2009, 5 (8): 592- 597.
33 RIEDEL M F, B?HI P, LI Y, et al. Atom-chip-based generation of entanglement for quantum metrology. Nature, 2010, 464 (7292): 1170- 1173.
34 ILO-OKEKE E O, BYRNES T. Information and backaction due to phase-contrast-imaging measurements of cold atomic gases: Beyond Gaussian states. Physical Review A, 2016, 94 (1): 013617.
35 LONE M Q, BYRNES T. Suppression of the ac-Stark-shift scattering rate due to non-Markovian behavior. Physical Review A, 2015, 92 (1): 011401.
36 VIDAL G, WERNER R F. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314.
37 PLENIO M B. Logarithmic negativity: A full entanglement monotone that is not convex. Physical Review Letters, 2005, 95 (9): 090503.
38 BYRNES T. Fractality and macroscopic entanglement in two-component Bose-Einstein condensates. Physical Review A, 2013, 88 (2): 023609.
39 LIDAR D A, WHALEY K B. Decoherence-free subspaces and subsystems [M]// Irreversible Quantum Dynamics, Lecture Notes in Physics, vol 622. Berlin: Springer, Berlin, 2003: 83-120.
Outlines

/