Estuary and Coastal Research

Temperature sensitivity and controlling factors of nitrogen fixation processes in sediments of the Yangtze River Estuary

  • Zhiyong YOU ,
  • Bolin LIU ,
  • Cheng LIU ,
  • Dengzhou GAO
Expand
  • State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

Received date: 2021-01-11

  Accepted date: 2021-01-11

  Online published: 2022-05-19

Abstract

To understand the stability of the estuarine ecosystem and nitrogen balance in the context of global climate change, it is important to investigate the temperature sensitivity of the microbial nitrogen fixation process. Until now, there have been few studies in the literature on the response of the nitrogen fixation process to temperature changes and its influencing factors. We selected six sampling sites around the Yangtze River Estuary (including four sites inside and two sites outside the Yangtze River Estuary) for the scope of the study; in particular, we explored the temperature sensitivity and influencing factors of the nitrogen fixation process on sediments of the Yangtze River Estuary using slurry incubation experiments and the 15N2 isotope tracer technique. The results showed that the in-situ temperature nitrogen fixation rate in the sediments of the Yangtze River Estuary ranged from 0.72 to 2.85 nmol·g–1·h–1. At 5 ~ 10 ℃ and20 ~ 30 ℃, the nitrogen fixation rate was inhibited by an increase in temperature. However, in the range of 10 ~ 20 ℃, the nitrogen fixation rate was significantly promoted with an increase in temperature. The sensitivity of the nitrogen fixation rate to temperature is relatively consistent, although the physical and chemical properties of the sediments vary significantly. Correlation analysis showed that the contents of sulfide, ferrous iron, nitrate, and total organic carbon were the main environmental factors affecting nitrogen fixation.

Cite this article

Zhiyong YOU , Bolin LIU , Cheng LIU , Dengzhou GAO . Temperature sensitivity and controlling factors of nitrogen fixation processes in sediments of the Yangtze River Estuary[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(3) : 101 -108 . DOI: 10.3969/j.issn.1000-5641.2022.03.011

References

1 ANDERSSON B, SUNDBACK K, HELLMAN M, et al. Nitrogen fixation in shallow-water sediments: Spatial distribution and controlling factors. Limnology and Oceanography, 2014, 59 (6): 1932- 1944.
2 SHIAU Y J, LIN M F, TAN C C, et al. Assessing N2 fixation in estuarine mangrove soils . Estuarine Coastal and Shelf Science, 2017, 189, 84- 89.
3 COLE L W, MCGLATHERY K J. Nitrogen fixation in restored eelgrass meadows. Marine Ecology Progress Series, 2012, 448, 235- 246.
4 BRAUER V S, STOMP M, ROSSO C, et al. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. Isme Journal, 2013, 7 (11): 2105- 2115.
5 GARCIAS-BONET N, VAQUER-SUNYER R, DUARTE C M, et al. Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16 (1): 167- 175.
6 JIANG H B, FUG F X, RIVERRO-CALLE S, et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nature Climate Change, 2018, 8 (8): 709- 712.
7 LEE R Y, TOYE S B. Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats. Marine Ecology Progress Series, 2006, 307, 127- 141.
8 BERTICS V J, LOSCHER C R, SALONEN I, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernforde Bay, Baltic Sea. Biogeosciences, 2013, 10 (3): 1243- 1258.
9 GARCIAS-BONET N, FUSI M, ALI M, et al. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences, 2018, 15 (23): 7333- 7346.
10 HOU L J, ZHENG Y L, LIU M, et al. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research:Biogeosciences, 2013, 118 (3): 1237- 1246.
11 胡晓婷, 程吕, 林贤彪, 等. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例. 中国环境科学, 2016, 36 (9): 2624- 2632.
12 徐皓. 长江口营养盐的收支平衡及迁移模式 [D]. 上海: 华东师范大学, 2013.
13 李涛. 崇明潮滩厌氧氨氧化过程及影响机理初步探究 [D]. 上海: 华东师范大学, 2013.
14 CHEN Z Y, LI J F, SHEN H T, et al. Yangtze River of China: Historical analysis of discharge variability and sediment flux. Geomorphology, 2001, 41 (2/3): 77- 91.
15 HOU L J, LIU M, XU S Y, et al. The diffusive fluxes of inorganic nitrogen across the intertidal sediment-water interface of the Changjiang Estuary in China. Acta Oceanologica Sinica, 2006, 25 (3): 48- 57.
16 张红丽, 尹国宇, 郑艳玲, 等. 沉积物再悬浮对长江口潮滩上覆水体脱氮过程的影响. 华东师范大学学报(自然科学版), 2020, (3): 78- 87.
17 WANG R, LI X F, HOU L J, et al. Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications. Mar Pollut Bull, 2018, 137, 542- 548.
18 HOU L J, YIN G Y, LIU M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments . Environmental Science & Technology, 2015, 49 (1): 326- 333.
19 HOU L J, ZHENG Y L, LIU M, et al. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands. Scientific Reports, 2015, (5): 15621.
20 LIU C, HOU L J, LIU M, et al. In situ nitrogen removal processes in intertidal wetlands of the Yangtze Estuary. Journal of Environmental Sciences, 2020, 93, 91- 97.
21 HOU L J, WANG R, YIN G Y, et al. Nitrogen fixation in the intertidal sediments of the Yangtze Estuary: Occurrence and environmental implications. Journal of Geophysical Research: Biogeosciences, 2018, 123 (3): 936- 944.
22 MARCARELLI A M, WURTSBAUGH W A. Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: An experimental examination. Limnology and Oceanography, 2006, 51 (5): 2278- 2289.
23 FULWEILER R W, BROWN S M, NIXON S W, et al. Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology Progress Series, 2013, 482, 57- 68.
24 GIER J, SOMMER S, LOSCHER C R, et al. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences, 2016, 13(14), 4065- 4080.
25 SAWICKA J E, JORGENSEN B B, BRUCHERT V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences, 2012, 9 (8): 3425- 3435.
26 ZHOU X B, SMITH H, SILVA A G, et al. Differential responses of dinitrogen fixation, Diazotrophic Cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-Cycle in biological soil crusts. Plos One, 2016, 11 (10): 129- 131.
27 RIGGSBEE J A, ORR C H, LEECH D M, et al. Suspended sediments in river ecosystems: Photochemical sources of dissolved organic carbon, dissolved organic nitrogen, and adsorptive removal of dissolved iron. Journal of Geophysical Research-Biogeosciences, 2008, 113 (G3): 121.
28 KNAPP A N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen . Frontiers in Microbiology, 2012, (3): 12.
29 李祥, 黄勇, 巫川, 等. Fe2 +和Fe3 +对厌氧氨氧化污泥活性的影响 . 环境科学, 2014, 35 (11): 4224- 4229.
30 邹小鲁, 蔡克强, 黄维南. 南岭黄檀根瘤固氮酶和吸氢酶活性研究. 亚热带植物通讯, 1995, (2): 22- 25.
31 BURRIS R H. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma, 1994, 183 (1): 62- 66.
32 贺天立. pH和温度对束毛藻和鳄球藻的生长、固氮及同位素分馏影响 [D]. 福建 厦门: 厦门大学, 2019.
33 林巧云. 寡营养南海无光区和富营养九龙江河口固氮作用初探 [D]. 福建 厦门: 厦门大学, 2019.
34 陈磊, 邵志伟, 高兴, 等. 大豆固氮相关的硫酸盐转运基因进化分析. 大豆科学, 2018, 37 (5): 697- 703.
35 KNOBLAUCH C, JORGENSEN B B. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environmental Microbiology, 1999, 1 (5): 457- 467.
36 TANG C, ROBSON A D, DILWORTH M J. The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytologist, 1990, 114 (2): 173- 182.
37 HOLGUIN G, VAZQUEZ P, BASHAN Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biology and Fertility of Soils, 2001, 33 (4): 265- 278.
38 ZHENG Z Z, WAN X H, XU M N, et al. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China. Journal of Geophysical Research-Biogeosciences, 2017, 122 (9): 2325- 2337.
39 陈琴, 戴俊, 廖兴文, 等. 杉木与固氮树种混交对土壤有机质及氮含量的影响. 广西林业科学, 2016, 45 (2): 149- 153.
40 TICHI M A, TABITA F R. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Archives of Microbiology, 2000, 174 (5): 322- 333.
41 BRANDES J A, DEVOL A H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Global Biogeochemical Cycles, 2002, 16 (4): 131.
42 朱坤, 吴莹, 齐丽君. 上海城市内河中有机碳含量的时空变化及影响因素分析. 华东师范大学学报(自然科学版), 2020, (1): 150- 158.
43 WADE J, WATERGOUSE H, ROCHE L. M, et al. Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils. Geoderma, 2018, 315, 120- 129.
Outlines

/