Journal of East China Normal University(Natural Science) >
Superfluorescence behavior of excitons in a quantum dot superlattice
Received date: 2021-05-19
Accepted date: 2021-12-30
Online published: 2022-07-19
In this study, photoluminescence spectra are studied in perovskite quantum dot superlattices based on two-photon absorption processes at 10 K. The dynamics of excitons is obtained using a time-resolved photoluminescence detection system. The sample exhibits typical superfluorescence characteristics in the single-photon excitation case: When the pumping power increases, the transient peak intensity increases nonlinearly, and the radiation lifetime decreases rapidly. Meanwhile, the intensities of the two-photon absorption fluorescence spectra are proportional to the square of the excitation power, and the dynamics of excitons under the two-photon absorption case exhibits the same characteristics as those in the single-photon excitation case. Thus, when the excitation density reaches a certain intensity, two-photon absorption can also induce a superfluorescence process.
Jiqing TAN , Qiangqiang WANG , Wei XIE . Superfluorescence behavior of excitons in a quantum dot superlattice[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(4) : 163 -168 . DOI: 10.3969/j.issn.1000-5641.2022.04.017
1 | DICKE R H. Coherence in spontaneous radiation processes. Physical Reviews, 1954, 93, 99- 110. |
2 | BONIFACIO R, LUGIATO L A. Cooperative radiation processes in two-level systems: Superfluorescence. Physical Review A, 1975, (11): 1507- 1521. |
3 | AKKERMANS E, GERO A, KAISER R. Photon localization and Dicke superradiance in atomic gases. Physical Review Letters, 2008, 101 (10): 103602. |
4 | SKRIBANOWITZ N, HERMAN I P, MACGILLIVRAY J C, et al. Observation of Dicke superradiance in optically pumped HF gas. Physical Review Letters, 1973, 30 (8): 309- 312. |
5 | BRADAC C, JOHNSSON M T, VAN BREUGEL M, et al. Room-temperature spontaneous superradiance from single diamond nanocrystals. Nature Communications, 2017, (8): 1205. |
6 | ANGERER A, STRELTSOV K, ASTNER T, et al. Superradiant emission from colour centres in diamond. Nature Physics, 2018, 14 (12): 1168- 1172. |
7 | SCHEIBNER M, SCHMIDT T, WORSCHECH L, et al. Superradiance of quantum dots. Nature Physics, 2007, 3 (2): 106- 110. |
8 | JAHNKE F, GIES C, AΒMANN M, et al. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers [J]. Nature Communications, 2016(7): 11540. |
9 | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut . Nano letters, 2015, 15 (6): 3692- 3696. |
10 | RAINò G, BECKER M A, BODNARCHUK M I. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563 (7733): 671- 675. |
11 | ZHOU C, ZHONG Y C, DONG H X, et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nature Communications, 2020, 11 (1): 329. |
12 | G?PPERT-MAYER M. über Elementarakte mit zwei Quantensprüngen. Annals of Physics, 1931, 401, 273- 294. |
13 | KAISER W, GARRETT C G B. Two-photon excitation in CaF2: Eu2 +. Physical Review Letters, 1961, (7): 229- 232. |
14 | BRAY R G, HOCHSTRASSER R M. Two-photon absorption by rotating diatomic molecules [J]. Molecular Physics, 1976, 31(4): 1199-1211. |
15 | BRUNNER K, ABSTREITER G, BOHM G, et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure [J]. Physical Review Letters, 1994, 73(8): 1138-1141. |
16 | DROBIZHEV M, MAKAROV N S, TILLO S E, et al. Two-photon absorption properties of fluorescent proteins. Nature methods, 2011, 8 (5): 393- 399. |
17 | LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300 (5624): 1434- 1436. |
18 | VOURA E B, JAISWAL J K, MATTOUSSI H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy [J]. Nature Medicine, 2004, 10(9): 993–998. |
19 | STROH M, ZIMMER J P, DUDA D G, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 2005, 11 (6): 678- 682. |
20 | WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Letters, 2016, 16, 448- 453. |
21 | CHEN J S, Z?íDEK K, CHáBERA P, et al. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots . The Journal of Physical Chemistry Letters, 2017, (8): 2316- 2321. |
22 | XU Y Q, CHEN Q, ZHANG, C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. Journal of the American Chemical Society, 2016, 138, 3761- 3768. |
23 | NAGAMINE G, ROCHA J O, BONATO L G, et al. Two-photon absorption and two-photon-induced gain in perovskite quantum dots. The Journal of Physical Chemistry Letters, 2018, (9): 3478- 3484. |
24 | GROSS M, HAROCHE S. Superradiance: An essay on the theory of collective spontaneous emission. Physics Reports, 1982, 93 (5): 301- 396. |
/
〈 |
|
〉 |