Evaluation Methods and Tools for Supply Chain Platform

Dynamic simulation for cloud database runtime environment

  • Shuhong YOU ,
  • Qian SU ,
  • Rong ZHANG
Expand
  • 1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
    2. China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, China

Received date: 2022-07-16

  Accepted date: 2022-07-16

  Online published: 2022-09-26

Abstract

This study proposes a comprehensive and general database environment simulation tool that can achieve the accurate, efficient and dynamic simulation of a normal runtime environment and broken resource situations from multiple dimensions. This tool can help users customize required test scenarios, reduce the difficulty of database benchmarking, improve testing efficiency, and achieve a better referential ability of benchmark results. Experiments under customized runtime environment demonstrate the superiority of this tool.

Cite this article

Shuhong YOU , Qian SU , Rong ZHANG . Dynamic simulation for cloud database runtime environment[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(5) : 73 -89 . DOI: 10.3969/j.issn.1000-5641.2022.05.007

References

1 BULAO J. How many companies use cloud computing in 2022? All you need to know [EB/OL]. (2022-07-08)[2022-07-10]. https://techjury.net/blog/how-many-companies-use-cloud-computing.
2 IBM Cloud Education. Containerization [EB/OL]. (2021-06-23)[2022-07-10]. https://www.ibm.com/cloud/learn/containerization.
3 The Kubernetes Authors. Kubernetes [EB/OL]. [2022-07-10]. https://kubernetes.io.
4 VERBITSKI A, GUPTA A, SAHA D, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases [C]// Proceedings of the 2017 ACM International Conference on Management of Data. 2017: 1041-1052.
5 VERBITSKI A, GUPTA A, SAHA D, et al. Amazon aurora: On avoiding distributed consensus for I/Os, commits, and membership changes [C]// Proceedings of the 2018 International Conference on Management of Data. 2018: 789-796.
6 CAO W, LIU Y, CHENG Z, et al. POLARDB Meets computational storage: Efficiently support analytical workloads in cloud-native relational database [C]// 18th USENIX Conference on File and Storage Technologies (FAST 20). 2020: 29-41.
7 ANTONOPOULOS P, BUDOVSKI A, DIACONU C, et al. Socrates: The new sql server in the cloud [C]// Proceedings of the 2019 International Conference on Management of Data. 2019: 1743-1756.
8 DEPOUTOVITCH A, CHEN C, CHEN J, et al. Taurus database: How to be fast, available, and frugal in the cloud [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020: 1463-1478.
9 MERENSTEIN A, TARASOV V, ANWAR A, et al. CNSBench: A cloud native storage benchmark [C]// 19th USENIX Conference on File and Storage Technologies (FAST 21). 2021: 263-276.
10 MA M, YIN Z, ZHANG S, et al. Diagnosing root causes of intermittent slow queries in cloud databases. Proceedings of the VLDB Endowment, 2020, 13 (8): 1176- 1189.
11 GitHub Inc. Woodpecker [EB/OL]. (2021-06-02)[2022-07-10]. https://github.com/DBHammer/Woodpecker.
12 GitHub Inc. Chaosblade [EB/OL]. (2021-07-18)[2022-07-10]. https://github.com/chaosblade-io/chaosblade.
13 GitHub Inc. Chaos-mesh [EB/OL]. [2022-07-10]. https://github.com/chaos-mesh.
14 MATTHEWS J N, HU W, HAPUARACHCHI M, et al. Quantifying the performance isolation properties of virtualization systems [C]// Proceedings of the 2007 Workshop on Experimental Computer Science. 2007: 6-15.
15 FELTER W, FERREIRA A, RAJAMONY R, et al. An updated performance comparison of virtual machines and linux containers [C]// International Symposium on Performance Analysis of Systems and Software (ISPASS). New York: IEEE, 2015: 171-172.
16 PANDEY A. Impact of memory intensive applications on performance of cloud virtual machine [C]// 2014 Recent Advances in Engineering and Computational Sciences (RAECS). New York: IEEE, 2014: 1-6.
17 BUSARI M, WILLIAMSON C. ProWGen: A synthetic workload generation tool for simulation evaluation of web proxy caches. Computer Networks, 2002, 38 (6): 779- 794.
18 JIN S, BESTAVROS A. Gismo: A generator of internet streaming media objects and workloads. ACM SIGMETRICS Performance Evaluation Review, 2001, 29 (3): 2- 10.
19 KAO W I, IYER R K. A user-oriented synthetic workload generator [C]// 1992 12th International Conference on Distributed Computing System. New York: IEEE, 1992: 270-277.
20 HILL J H. An architecture independent approach to emulating computation intensive workload for early integration testing of enterprise DRE systems [C]// OTM Confederated International Conferences. Berlin, Heidelberg: Springer, 2009: 744-759.
21 MILLER J E, KASTURE H, KURIAN G, et al. Graphite: A distributed parallel simulator for multicores [C]// HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture. New York: IEEE, 2010: 1-12.
22 CARLSON T E, HEIRMAN W, EECKHOUT L. Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation [C]// Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. 2011: 1-12.
23 SANCHEZ D, KOZYRAKIS C. ZSim: Fast and accurate microarchitectural simulation of thousand-core systems. ACM SIGARCH Computer Architecture News, 2013, 41 (3): 475- 486.
24 WANG J, BEU J, BHEDA R, et al. Manifold: A parallel simulation framework for multicore systems [C]// 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). New York: IEEE, 2014: 106-115.
25 JEONG H, LEE S. A workload generator for database system benchmarks [C]// International Conference on Information Integration and Web-based Applications & Services (iiWAS). 2005: 813-822.
26 ZHANG C, ZHANG R, SU Q, et al. Dynamic environment simulation for database performance evaluation [C]// Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data. Cham, Switzerland: Springer, 2021: 180-189.
27 GitHub Inc. Fio [EB/OL]. [2022-07-10]. https://github.com/axboe/fio.
28 HUANG D, LIU Q, CUI Q, et al. TiDB: A raft-based HTAP database. Proceedings of the VLDB Endowment, 2020, 13 (12): 3072- 3084.
29 GRIFFITHS N. nmon Performance: A free tool to analyze AIX and Linux performance [EB/OL]. (2006-02-27) [2022-07-10]. http://www.52testing.com/html/44/175444-87137.html.
30 TPC. TPC-C [EB/OL]. [2022-07-10]. http://www.tpc.org/tpcc/.
Outlines

/