Journal of East China Normal University(Natural Science) >
Parallel deep-forest-based abnormal traffic detection for power distribution communication networks
Received date: 2023-07-05
Online published: 2023-09-20
With the continuous development of network attack methods, it is becoming increasingly difficult to protect the security of power communication networks. Currently, the detection accuracy of abnormal traffic in distribution communication networks is insufficient and the efficiency of abnormal traffic detection is low. To address these issues, a new method for abnormal traffic detection in distribution communication networks is proposed, in which feature extraction and traffic classification are improved. The proposed method utilizes a time-frequency domain feature extraction method, using an adaptive redundancy boosting multiwavelet packet transform to quickly extract frequency-domain features, while time-domain features are extracted using the communication characteristics of the distribution network. To improve traffic classification and detection, a parallel deep forest classification algorithm is proposed based on a distributed computing framework, and the training and classification task scheduling strategies are optimized. The experimental results show that the false alarm rate of the proposed method is only 2.63% and the accuracy rate for the detection of abnormal traffic in distribution networks is 98.29%.
Zhenglei ZHOU , Jun CHEN , Juntao PAN , Peisen YUAN . Parallel deep-forest-based abnormal traffic detection for power distribution communication networks[J]. Journal of East China Normal University(Natural Science), 2023 , 2023(5) : 122 -134 . DOI: 10.3969/j.issn.1000-5641.2023.05.011
1 | 张博, 刘绚, 于宗超, 等.. 基于人工智能的电力系统网络攻击检测研究综述. 高电压技术, 2022, 48 (11): 4413- 4426. |
2 | 周伯阳, 郭志民, 王延松, 等.. 基于多尺度低秩模型的电力无线接入网异常流量检测方法. 电子学报, 2020, 48 (8): 1552- 1557. |
3 | 夏炳森, 唐元春, 汪智平.. 基于AMCNN-LSTM的电力无线接入专网异常流量检测. 重庆邮电大学学报(自然科学版), 2021, 33 (6): 939- 945. |
4 | 张亮, 屈刚, 李慧星, 等.. 智能电网电力监控系统网络安全态势感知平台关键技术研究及应用. 上海交通大学学报, 2021, 55 (S2): 103- 109. |
5 | 张嘉誉, 章坚民, 杨才明, 等.. 基于信息物理融合的智能变电站过程层网络异常流量检测. 电力系统自动化, 2019, 43 (14): 173- 181. |
6 | QIANG Y, HAO W J, GE L J, et al.. FARIMA model-based communication traffic anomaly detection in intelligent electric power substations. IET Cyber-Physical Systems: Theory and Applications, 2019, 4 (1): 22- 29.. |
7 | ROBERT M, ING-RAY C.. Behavior-rule based intrusion detection systems for safety critical smart grid applications. IEEE Transactions on Smart Grid, 2013, 4 (3): 1254- 1263. |
8 | TAO Z, YAN Y, YANG Y, et al. A nonnegativity-constraint sparse stacked denoising autoencoder for anomaly detection in electric power communication network[C]// 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2020. DOI:10.1109/BMSB49480.2020.9379595. |
9 | 吕政权, 李朝阳, 王海峰, 等.. 基于GRU-CNN的综合能源网络安全攻击检测方法. 华电技术, 2021, 43 (2): 9- 14. |
10 | 田伟宏, 李喜旺, 司志坚.. 基于长短期记忆网络的工控网络异常流量检测. 计算机系统应用, 2020, 29 (9): 266- 271. |
11 | 付子爔, 徐洋, 吴招娣, 等.. 基于增量学习的SVM-KNN网络入侵检测方法. 计算机工程, 2020, 46 (4): 115- 122. |
12 | 舒斐, 陈涛, 王斌等.. 一种基于DBN-RF的电网工控系统异常识别方法. 计算机工程, 2020, 46 (11): 35- 41. |
13 | 杨永娇, 唐亮亮.. 一种基于深度Encoder-Decoder神经网络的智能电网数据服务器流量异常检测算法. 计算机与现代化, 2019, (10): 66- 71. |
14 | 陶应亮.. 基于深度学习和三支决策的DDoS攻击检测算法. 计算技术与自动化, 2021, 40 (4): 166- 171. |
15 | 杨学良, 陶晓峰, 熊霞等.. 基于深度森林算法的窃电行为检测方法研究. 智慧电力, 2019, 47 (10): 85- 92. |
16 | 向刚, 韩峰, 周虎, 等.. 数据驱动的航天器故障诊断研究现状及挑战. 电子测量与仪器学报, 2021, 35 (2): 1- 16. |
17 | 郑潜, 乔丹, 郎恂, 等.. 基于噪声辅助快速多维经验模式分解的运动想象脑电信号分类方法. 智能科学与技术学报, 2020, 2 (3): 240- 250. |
18 | 杨挺, 侯昱丞, 赵黎媛, 等.. 基于时–频域混合特征的变电站通信网异常流量检测方法. 电力系统自动化, 2020, 44 (16): 79- 86. |
/
〈 |
|
〉 |