Journal of East China Normal University(Natural Science) >
Integrating multi-granularity semantic features into the Chinese sentiment analysis method
Received date: 2022-06-20
Online published: 2023-11-23
Chinese sentiment analysis is one of important researches in natural language processing, which aims to discover the sentimental tendencies in the Chinese text. In recent years, research on Chinese text sentiment analysis has made great progress in efficiencies, but few studies have explored the characteristics of the language and downstream task requirements. Therefore, in view of the particularity of Chinese text and the requirements of sentiment analysis, using the Chinese text sentiment analysis method that integrates multi-granularity semantic features, such as characters, words, radicals, and part-of-speech is proposed. This introduces radical features and emotional part-of-speech features based on character and word features. Additionally, this integration uses bidirectional the long short-term memory network (BLSTM), attention mechanism and recurrent convolutional neural network (RCNN). The softmax function is used to predict the sentimental tendencies by integrating multi-granularity semantic features. The comparative experiment results on the NLPECC (natural language processing and Chinese computing) dataset showed that the F1 score of the proposed method was 84.80%, which improved the performance of the existing methods to some extent and completed the Chinese text sentiment analysis task.
Juxiang REN , Zhongbao LIU . Integrating multi-granularity semantic features into the Chinese sentiment analysis method[J]. Journal of East China Normal University(Natural Science), 2023 , 2023(6) : 95 -107 . DOI: 10.3969/j.issn.1000-5641.2023.06.009
1 | 刘文秀, 李艳梅, 罗建, 等.. 基于BERT与BiLSTM的中文短文本情感分析. 太原师范学院学报(自然科学版), 2020, 19 (4): 52- 58. |
2 | DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics (ACL), 2019: 4171-4186. |
3 | 徐凯旋, 李宪, 潘亚磊.. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类. 复杂系统与复杂性科学, 2021, 18 (2): 89- 94. |
4 | 张海涛, 王丹, 徐海玲, 等.. 基于卷积神经网络的微博舆情情感分类研究. 情报学报, 2018, 37 (7): 695- 702. |
5 | 曹宇, 李天瑞, 贾真, 等.. BGRU: 中文文本情感分析的新方法. 计算机科学与探索, 2019, 13 (6): 973- 981. |
6 | 吴鹏, 李婷, 仝冲, 等.. 基于OCC模型和LSTM模型的财经微博文本情感分类研究. 情报学报, 2020, 39 (1): 81- 89. |
7 | 胡任远, 刘建华, 卜冠南, 等.. 融合BERT的多层次语义协同模型情感分析研究. 计算机工程与应用, 2021, 57 (13): 176- 184. |
8 | 缪亚林, 姬怡纯, 张顺, 等.. CNN-BiGRU模型在中文短文本情感分析的应用. 情报科学, 2021, 39 (4): 85- 91. |
9 | 李平, 戴月明, 吴定会.. 双通道卷积神经网络在文本情感分析中的应用. 计算机应用, 2018, 38 (6): 1542- 1546. |
10 | 张柳, 王晰巍, 黄博, 等.. 基于字词向量的多尺度卷积神经网络微博评论的情感分类模型及实验研究. 图书情报工作, 2019, 63 (18): 99- 108. |
11 | 陈欣, 杨小兵, 姚雨虹.. 基于BLSTM算法和字词融合的文本情感分类方法. 中国计量大学学报, 2020, 31 (2): 225- 232. |
12 | 赵富, 杨洋, 蒋瑞, 等.. 融合词性的双注意力Bi-LSTM情感分析. 计算机应用, 2018, 38 (S2): 103- 106,147. |
13 | 王义, 沈洋, 戴月明.. 基于细粒度多通道卷积神经网络的文本情感分析. 计算机工程, 2020, 46 (5): 102- 108. |
14 | ZHOU H, HUANG M L, ZHANG T Y, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI, 2018: 730-738. |
15 | JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification [C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Volume 2, Short Papers. Association for Computational Linguistics (ACL), 2017: 427-431. |
16 | XU G X, MENG Y T, QIU X Y, et al.. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 2019, (7): 51522- 51532. |
17 | 李卫疆, 漆芳.. 基于多通道双向长短期记忆网络的情感分析. 中文信息学报, 2019, 33 (12): 119- 128. |
18 | 艾山·吾买尔, 魏文琳, 早克热·卡德尔.. 基于BiLSTM + Attention的体育领域情感分析研究. 新疆大学学报(自然科学版), 2020, 37 (2): 142- 149. |
/
〈 |
|
〉 |