Quantum Physics and Quantum Information Processing

Linear entropy uncertainty relation of Ising model under Dzyaloshinskii-Moriya interaction

  • Yu ZHAO ,
  • Jinming LIU
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2023-03-20

  Online published: 2024-05-25

Abstract

In this research, by considering the two-qubit Ising model under Dzyaloshinskii-Moriya(DM) interaction as the research object, we investigate the effects of coupling strength, DM interaction and ambient temperature on the linear entropy uncertainty relation(EUR) in the system. Meanwhile, the variation of thermal entanglement with environment with ambient temperature is also discussed, and the relationship between thermal entanglement and linear EUR is compared. The results demonstrate that the systemic linear entropy uncertainty and thermal entanglement variance trend depends on the selection of environmental parameters, and their overall evolution behavior is roughly anti-related. Additionally, for a complete set of mutually unbiased bases, when different measurement base combinations are selected, the uncertainty relation lower bound will vary with the change in the number of measurement bases; moreover, the linear EUR can be transformed into an equation in special cases and its lower bound does not depend on the selection of a specific observation quantity. Compared with the previous quantum memory-assisted EUR, it provides a useful reference for precise measurement.

Cite this article

Yu ZHAO , Jinming LIU . Linear entropy uncertainty relation of Ising model under Dzyaloshinskii-Moriya interaction[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(3) : 147 -155 . DOI: 10.3969/j.issn.1000-5641.2024.03.016

References

1 HEISENBERG W.. über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 1927, 43 (3): 172- 198.
2 ROBERTSON H P.. The uncertainty principle. Physical Review, 1929, 34 (1): 163- 164.
3 BIA?YNICKI-BIRULA I, MYCIELSKI J.. Uncertainty relations for information entropy in wave mechanics. Communications in Mathematical Physics, 1975, 44 (2): 129- 132.
4 DEUTSCH D.. Uncertainty in quantum measurements. Physical Review Letters, 1983, 50 (9): 631- 633.
5 KRAUS K.. Complementary observables and uncertainty relations. Physical Review D, 1987, 35 (10): 3070- 3075.
6 MAASSEN H, UFFINK J B M.. Generalized entropic uncertainty relations. Physical Review Letters, 1988, 60 (12): 1103- 1106.
7 BERTA M, CHRISTANDL M, COLBECK R, et al.. The uncertainty principle in the presence of quantum memory. Nature Physics, 2010, 6 (9): 659- 662.
8 PREVEDEL R, HAMEL D R, COLBECK R, et al.. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nature Physics, 2011, 7 (10): 757- 761.
9 LI C F, XU J S, XU X Y, et al.. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nature Physics, 2011, 7 (10): 752- 756.
10 JU F H, ZHANG Z Y, LIU J M.. Entropic uncertainty relation of a qubit–qutrit Heisenberg spin model and its steering. Communications in Theoretical Physics, 2020, 72 (12): 125102.
11 ZHANG Z Y, WEI D, LIU J M.. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence. Laser Physics Letters, 2018, 15 (6): 065207.
12 LIU S, MU L Z, FAN H.. Entropic uncertainty relations for multiple measurements. Physical Review A, 2015, 91 (4): 042133.
13 WANG H Y, MA Z H, WU S J, et al.. Uncertainty equality with quantum memory and its experimental verification. npj Quantum Information, 2019, 5 (1): 39.
14 WOOTTERS W K, FIELDS B D.. Optimal state-determination by mutually unbiased measurements. Annals of Physics, 1989, 191 (2): 363- 381.
15 DURT T, ENGLERT B-G, BENGTSSON I, et al.. On mutually unbiased bases. International Journal of Quantum Information, 2010, 8 (4): 535- 640.
16 YUAN H, ZHOU Z W, GUO G C.. Quantum state tomography via mutually unbiased measurements in driven cavity QED systems. New Journal of Physics, 2016, 18 (4): 043013.
17 DZYALOSHINSKY I.. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics Chemistry of Solids, 1958, 4 (4): 241- 255.
18 JAFARI R, KARGARIAN M, LANGARI A, et al.. Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Physical Review B, 2008, 78 (21): 214414.
19 LIU Y C, JIN G R, YOU L.. Quantum-limited metrology in the presence of collisional dephasing. Physical Review A, 2010, 82 (4): 045601.
20 ZIDAN N, BAKRY H, RAHMAN A U.. Entanglement and entropic uncertainty of two two‐level atoms. Annalen der Physik, 2022, 534 (4): 2100555.
21 HASHEM M, MOHAMED A-B A, HADDADI S, et al.. Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Applied Physics B, 2022, 128 (4): 87.
22 ZHANG Z Y, LIU J M.. Coherence and entropic uncertainty relation of dipole-coupled qubits under decoherence. Physica A, 2022, 589, 126639.
23 廉熠鋆, 刘金明.. Garfinkle-Horowitz-Strominger黑洞视界附近qubit-qutrit系统量子Fisher信息的保护. 华东师范大学学报 (自然科学版), 2022, (4): 120- 130.
24 VIDAL G, WERNER R F.. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314.
Outlines

/