First-Principle Calculations

Structural phase transitions of Th2N2S under high pressure: A first-principles calculation study

  • Runrun DU ,
  • Shan WANG ,
  • Xuezhi KE
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2023-04-19

  Online published: 2024-05-25

Abstract

Based on the first-principles calculations and particle swarm optimization algorithm, the crystal structures and physical properties of Th2N2S are examined in the pressure range of 0~200 GPa. Our results successfully reproduce the experimental phase$P\bar {{3}}m1$ at ambient pressure and predicted two new structures at high pressure: the I4/mmm and Cmmm phases. A series of pressure-induced structural phase transitions were determined, namely from the$P\bar {{3}}m1$ phase to the I4/mmm phase, and then to the Cmmm phase, with corresponding phase transition pressures of 48.2 GPa and 156.2 GPa. The phonon dispersion curves and elastic constants of Th2N2S indicate that these three phases are dynamically and mechanically stable. The obtained mechanical properties demonstrate the natural ductility of the $P\bar {{3}}m1$, I4/mmm and Cmmm phases. Among them, the anisotropy degree of the Cmmm phase is the largest. Further, our electronic structure calculations show that the phase transition from the$P\bar {{3}}m1$ to I4/mmm is a semiconductor-metal phase transition.

Cite this article

Runrun DU , Shan WANG , Xuezhi KE . Structural phase transitions of Th2N2S under high pressure: A first-principles calculation study[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(3) : 36 -44 . DOI: 10.3969/j.issn.1000-5641.2024.03.004

References

1 ANDERSEN M B, ELLIOTT T, FREYMUTH H, et al.. The terrestrial uranium isotope cycle. Nature, 2015, 517 (7534): 356- 359.
2 BAGLA P.. Thorium seen as nuclear’s new frontier. Science, 2015, 350 (6262): 726- 727.
3 GRIMES R W, NUTTALL W J.. Generating the option of a two-stage nuclear renaissance. Science, 2010, 329 (5993): 799- 803.
4 GUO Y L, QIU W J, KE X Z, et al.. A new phase of ThC at high pressure predicted from a first-principles study. Physics Letters A, 2015, 379 (26/27): 1607- 1611.
5 YU C, LIN J, HUAI P, et al.. Structural phase transition of ThC under high pressure. Scientific Reports, 2017, (7): 96.
6 GUO Y L, YU C, LIN J, et al.. Pressure-induced structural transformations and polymerization in ThC2. Scientific Reports, 2017, (7): 45872.
7 GERWARD L, OLSEN J S, BENEDICT U, et al.. The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa. Journal of Applied Crystallography, 1985, 18 (5): 339- 341.
8 MODAK P, VERMA A K.. First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa. Physical Review B, 2011, 84 (2): 024108.
9 IDIRI M, LE BIHAN T, HEATHMAN S, et al.. Behavior of actinide dioxides under pressure: UO2 and ThO2. Physical Review B, 2004, 70 (1): 014113.
10 LIANG B Y, ANDREWS L.. Matrix infrared spectra and quasirelativistic DFT studies of ThS and ThS2. The Journal of Physical Chemistry A, 2002, 106 (16): 4038- 4041.
11 GUO Y L, WANG C Y, QIU W J, et al.. Structural and electronic phase transitions of ThS2 from first-principles calculations. Physical Review B, 2016, 94 (13): 134104.
12 ARIF KHALIL R M, HUSSAIN M I, SAEED N, et al.. The prediction of structural, electronic, optical and vibrational behavior of ThS2 for nuclear fuel applications: A DFT study. Optical and Quantum Electronics, 2021, 53, 11.
13 SAHOO B D, JOSHI K D, KAUSHIK T C.. High pressure structural stability of ThN: Ab-initio study. Journal of Nuclear Materials, 2019, 521, 161- 166.
14 SAHOO B D, JOSHI K D, KAUSHIK T C.. Structural, elastic, vibrational, thermophysical properties and pressure-induced phase transitions of ThN2, Th2N3, and Th3N4: An ab initio investigation. Journal of Applied Physics, 2020, 128 (3): 035902.
15 ZHANG Y, GUO Y L, LIAO Z G, et al.. Ab initio investigation of pressure-induced structural transitions and electronic evolution of Th3N4. High Pressure Research, 2020, 40 (2): 267- 282.
16 BENZ R, ZACHARIASEN W H.. Crystal structure of the compounds U2N2X and Th2(N, O)2 with X= P, S, As and Se. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969, 25 (2): 294- 296.
17 WANG Y C, LV J, ZHU L, et al.. CALYPSO: A method for crystal structure prediction. Computer Physics Communications, 2012, 183 (10): 2063- 2070.
18 MADDOX J.. Crystals from first principles. Nature, 1988, 335, 201- 201.
19 LONIE D C, ZUREK E.. XTALOPT version r7: An open-source evolutionary algorithm for crystal structure prediction. Computer Physics Communications, 2011, 182 (10): 2305- 2306.
20 WANG Y C, LV J, ZHU L, et al.. Crystal structure prediction via particle-swarm optimization. Physical Review B, 2010, 82 (9): 094116.
21 KRESSE G, FURTHMüLLER J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54 (16): 11169.
22 KRESSE G, FURTHMüLLER J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6 (1): 15- 50.
23 PERDEW J P, BURKE K, ERNZERHOF M.. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865- 3868.
24 TOGO A, OBA F, TANAKA I.. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 2008, 78 (13): 134106.
25 PARLINSKI K, LI Z Q, KAWAZOE Y.. First-principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 1997, 78 (21): 4063- 4066.
26 MATAR S F, KFOURY C N.. Combined crystal chemistry and DFT studies of ThNCl and Th2N2X (X: chalcogen) behaving as pseudo-binaries. Solid State Sciences, 2018, 76, 1- 7.
27 COCHRAN W.. Crystal stability and the theory of ferroelectricity. Advances in Physics, 1960, 9 (36): 387- 423.
28 LE PAGE Y, SAXE P.. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B, 2002, 65 (10): 104104.
29 MOUHAT F, COUDERT F X.. Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 2014, 90 (22): 224104.
30 WATT J P, PESELNICK L.. Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of Applied Physics, 1980, 51 (3): 1525- 1531.
31 CHUNG D H, BUESSEM W R.. The elastic anisotropy of crystals. Journal of Applied Physics, 1967, 38 (5): 2010- 2012.
32 HILL R.. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society, Section A, 1952, 65 (5): 349- 354.
33 PUGH S F.. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45 (367): 823- 843.
34 RANGANATHAN S I, OSTOJA-STARZEWSKI M.. Universal elastic anisotropy index. Physical Review Letters, 2008, 101 (5): 055504.
35 KOSCIELSKI L A, RINGE E, VAN DUYNE R P, et al.. Single-crystal structures, optical absorptions, and electronic distributions of thorium oxychalcogenides ThOQ (Q= S, Se, Te). Inorganic Chemistry, 2012, 51 (15): 8112- 8118.
36 SHEIN I R, SHEIN K I, IVANOVSKII A L.. First-principle study of B1-like thorium carbide, nitride and oxide. Journal of Nuclear Materials, 2006, 353 (1/2): 19- 26.
37 DAROCA D P, JAROSZEWICZ S, LLOIS A M, et al.. Phonon spectrum, mechanical and thermophysical properties of thorium carbide. Journal of Nuclear Materials, 2013, 437 (1/2/3): 135- 138.
Outlines

/