Journal of East China Normal University(Natural Science) >
Research on calculation of two-dimensional transition metal chalcogenides compounds MX2-MX-MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te)
Received date: 2023-01-04
Online published: 2024-05-25
The crystal structure, stability, electronic structure, and magnetism of two-dimensional transition metal chalcogenides compounds, MX2-MX-MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te), were systematically investigated using first-principles calculations based on the density functional theory (DFT). Furthermore, the magnetic coupling mechanisms of these materials were analyzed. The results show that the formation energies of these compounds are negative, indicating that the compounds can be fabricated experimentally. MnS2-MnS-MnS2 and MnSe2-MnSe-MnSe2 exhibit ferromagnetic half-metal properties, whereas CrS2-CrS-CrS2 transforms into a ferromagnetic half-metal under applied stress.
Wenjie DING , Wenhui XIE . Research on calculation of two-dimensional transition metal chalcogenides compounds MX2-MX-MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te)[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(3) : 45 -53 . DOI: 10.3969/j.issn.1000-5641.2024.03.005
1 | WEBSTER L, YAN J A.. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Physical Review B, 2018, 98 (14): 144411. |
2 | LIU Z, DENG L J, PENG B.. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Research, 2020, 14 (6): 1802- 1813. |
3 | GIBERTINI M, KOPERSKI M, MORPURGO A F, et al.. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14 (5): 408- 419. |
4 | HUANG M, GAO L, ZHANG Y, et al.. Possible topological hall effect above room temperature in layered Cr1.2Te2 ferromagnet. Nano Letter, 2021, 21 (10): 4280- 4286. |
5 | ZHAO X X, SONG P, WANG C C, et al.. Engineering covalently bonded 2D layered materials by self-intercalation. Nature, 2020, 581 (7807): 171- 177. |
6 | FREITAS D C, WEHT R, SULPICE A, et al.. Ferromagnetism in layered metastable 1T-CrTe2. Journal of Physics: Condensed Matter, 2015, 27 (17): 176002. |
7 | SUN X D, LI W Y, WANG X, et al.. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Research, 2020, 13 (12): 3358- 3363. |
8 | FERREIRA P P, MANESCO A L R, DORINI T T, et al.. Strain engineering the topological type-II Dirac semimetal NiTe2. Physical Review B, 2021, 103 (12): 125134. |
9 | LIU H N, WANG X S, WU J X, et al.. Vapor deposition of magnetic van der Waals NiI2 crystals. ACS Nano, 2020, 14 (8): 10544- 10551. |
10 | KULISH V V, HUANG W.. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. Journal of Materials Chemistry C, 2017, 5 (34): 8734- 8741. |
11 | LIU Y, WANG W, LU H Y, et al.. The environmental stability characterization of exfoliated few-layer CrXTe3 (X = Si, Ge) nanosheets. Applied Surface Science, 2020, 511, 145452. |
12 | MOGULKOC A, MODARRESI M, RUDENKO A N.. Two-dimensional chromium pnictides CrX (X = P, As, Sb): Half-metallic ferromagnets with high Curie temperature. Physical Review B, 2020, 102 (2): 024441. |
13 | WANG B, ZHANG Y H, MA L, et al.. MnX (X = P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11 (10): 4204- 4209. |
14 | LIU N S, WANG C, JI W.. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71 (12): 127504. |
15 | SHI M Z, KANG B L, MENG F B, et al.. Research progress of tuning correlated state in two-dimensional system by organic molecule intercalation. Acta Physica Sinica, 2022, 71 (12): 127403. |
16 | YUAN S G, PANG S Y, HAO J H.. 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7 (2): 021304. |
17 | ZHAI B X, DU J, LI X P, et al.. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: A first-principle study. Journal of Semiconductors, 2019, 40 (8): 081509. |
18 | GAO Y Q, GANGULI N, KELLY P J.. DFT study of itinerant ferromagnetism in p-doped monolayers of MoS2. Physical Review B, 2019, 100 (23): 235440. |
19 | LASEK K, LI J F, KOLEKAR S, et al.. Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective. Surface Science Reports, 2021, 76 (2): 100523. |
20 | LI H, RUAN S C, ZENG Y J.. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Advanced Materials, 2019, 31 (27): 1900065. |
21 | LIANG Q J, ZHANG Q, ZHAO X X, et al.. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano, 2021, 15 (2): 2165- 2181. |
22 | HARDY W J, YUAN J T, GUO H, et al.. Thickness-dependent and magnetic-field-driven suppression of antiferromagnetic order in thin V5S8 single crystals. ACS Nano, 2016, 10 (6): 5941- 5946. |
23 | HUANG H, GAO M, WANG J H, et al.. Intercalator-assisted plasma-liquid technology: An efficient exfoliation method for few-layer two-dimensional materials. Science China Materials, 2020, 63 (10): 2079- 2085. |
24 | LI Q Q, LI S, WU D, et al.. Magnetic properties manipulation of CrTe2 bilayer through strain and self-intercalation. Applied Physics Letters, 2021, 119 (16): 162402. |
25 | GUO Z N, SUN F, YUAN W X.. Chemical intercalations in layered transition metal chalcogenides: Syntheses, structures, and related properties. Crystal Growth & Design, 2017, 17 (4): 2238- 2253. |
26 | LIM S, PAN S K, WANG K F, et al.. Tunable single-atomic charges on a cleaved intercalated transition metal dichalcogenide. Nano Letters, 2022, 22 (4): 1812- 1817. |
27 | MAY A F, OVCHINNIKOV D, ZHENG Q, et al.. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano, 2019, 13 (4): 4436- 4442. |
28 | GONG C, LI L, LI Z L, et al.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546 (7657): 265- 269. |
29 | JIANG X, LIU Q X, XING J P, et al.. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews, 2021, 8 (3): 031305. |
30 | WU S M, WANG H, LI L. et al.. Intercalated MXene-based layered composites: Preparation and application. Chinese Chemical Letters, 2020, 31 (4): 961- 968. |
31 | XU W S, KE Y X, WANG Z, et al.. The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes. Surface Science Reports, 2021, 76 (4): 100542. |
32 | LI X Q, WANG C Y, CAO Y, et al.. Functional MXene materials: Progress of their applications. Chemistry— An Asian Journal, 2018, 13 (19): 2742- 2757. |
33 | ZHOU J D, ZHANG W J, LIN Y C, et al.. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature, 2022, 609 (7925): 46- 51. |
34 | PACK J D, MONKHORST H J.. “Special points for Brillouin-zone integrations”—A reply. Physical Review B, 1977, 16 (4): 1748- 1749. |
35 | ANDERSON P W.. New approach to the theory of superexchange interactions. Physical Review, 1959, 115 (1): 2- 13. |
36 | GOODENOUGH J B.. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Physical Review, 1955, 100 (2): 564- 573. |
/
〈 |
|
〉 |