Physics and Electronics

Research on an isothermal remanent magnetization detection system based on the rubidium atomic ensemble

  • Yue CHEN ,
  • Zichang WANG ,
  • Guzhi BAO ,
  • Yuan WU ,
  • Liqing CHEN
Expand
  • 1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
    2. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-02-09

  Online published: 2024-07-23

Abstract

Isothermal remanent magnetization(IRM) is an important research topic in the analysis of material magnetic characteristics. However, owing to its low sensitivity, large volume, and high maintenance cost, the classical IRM measurement system cannot satisfy the practical requirements. Therefore, it is necessary to develop the IRM measurement system to attain a high sensitivity and small size. The magnetic field measurement technology based on the rubidium atomic ensemble has the advantages of high sensitivity and small size; accordingly, in this study, an IRM measurement system based on rubidium atomic ensemble is proposed. Here we focus on the design process regarding the magnetization device and residual magnetism detection device. More importantly, the IRM measurement system can successfully detect the soil samples collected from the Cherry River in Minhang Campus of East China Normal University. Our research demonstrates that the proposed detection system is easy to operate and maintain. Moreover, it has significant application prospects in the fields of environmental magnetism, geological exploration, and biological magnetic field measurement.

Cite this article

Yue CHEN , Zichang WANG , Guzhi BAO , Yuan WU , Liqing CHEN . Research on an isothermal remanent magnetization detection system based on the rubidium atomic ensemble[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(4) : 40 -46 . DOI: 10.3969/j.issn.1000-5641.2024.04.004

References

1 曲赞.. 用于环境研究的磁性参数简介. 地质科技情报, 1994, (2): 98- 100, 104.
2 张卫国.. 环境磁学研究及其若干进展. 世界科学, 2005, (10): 25- 27.
3 张卫国, 俞立中, HUTCHINSON S M.. 长江口南岸边滩沉积物重金属污染记录的磁诊断方法. 海洋与湖沼, 2000, (6): 616- 623.
4 汪卫国, 戴霜, 陈莉莉, 等.. 白令海和西北冰洋表层沉积物磁化率特征初步研究. 海洋学报(中文版), 2014, 36 (9): 121- 131.
5 高鹏. 高分辨率环境磁学记录揭示的晚中新世青藏高原东北部环境变化 [D]. 兰州: 兰州大学, 2022.
6 张亚南, 仲义, 刘青松, 等. ~ 90 ka以来大气CO2变化对太平洋深水环流的响应: 来自南海地球化学与环境磁学的证据 [C]// 中国地球科学联合学术年会. 2021年中国地球科学联合学术年会论文集(十九). 2021.
7 李根, 李文.. 环境磁学在重金属污染研究中的应用. 中国环境监测, 2022, 38 (6): 183- 195.
8 韦露, 范天来, 陈家胜, 等.. 珊瑚礁岩石磁学、环境磁学和磁性地层学研究进展. 矿物岩石地球化学通报, 2021, 40 (5): 1198- 1206.
9 张文静. 末次盛冰期以来海南岛东北部的海岸风沙沉积与环境演变 [D]. 福州: 福建师范大学, 2021.
10 陈艇, 刘青松, 郑一.. 黄河水下三角洲钻孔沉积物磁学记录及其年代学意义. 科学通报, 2021, 66 (30): 3902- 3915.
11 白帆, 常燎, 薛鹏飞, 等.. 等温剩磁曲线分解方法及其批量处理工具BatchUnMix. 地球物理学报, 2022, 65 (12): 4789- 4801.
12 杜谷, 潘忠习, 冉敬.. 微型脉冲充磁仪的研制及应用. 岩矿测试, 2006, (4): 381- 383.
13 陈英玉, 蒋复初.. 环境磁学在第四纪气候与环境研究中的应用. 青海大学学报(自然科学版), 2007, (94): 34- 37.
14 李勇. 一种应用等温剩磁检测石英砂中铁含量的方法 [P]. 安徽省: CN106645382B, 2020-08-07.
15 长江口潮滩沉积物环境磁学研究 [C]// 中国海洋学会海岸河口分会、中国海洋湖沼学会海岸河口分会、华东师范大学河口海岸国家重点实验室. 第八届全国海岸河口学术研讨会暨海岸河口理事会议论文摘要集. [出版地不详]: [出版者不详], 2004.
16 周行平. 全数字磁通门的设计和实现 [D]. 杭州: 浙江大学, 2007.
17 DANG H B, MALOOF A C, ROMALIS M V.. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Applied Physics Letters, 2010, 97 (15): 151110.
18 HU Y N, IWATA G Z, MOHAMMADI M, et al.. Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells. Proceedings of the National Academy of Sciences, 2020, 117 (20): 10667- 10672.
19 SUTTER J U, LEWIS O, ROBINSON C, et al.. Recording the heart beat of cattle using a gradiometer system of optically pumped magnetometers. Computers and Electronics in Agriculture, 2020, 177, 105651.
20 徐文杰, 江敏, 彭新华.. 基于高灵敏度原子磁力计的超低场核磁共振谱学研究. 中国科学技术大学学报, 2020, 50 (8): 1138- 1143.
21 王晓飞, 孙献平, 赵修超, 等.. 超灵敏原子磁力计在生物磁应用中的研究进展. 中国激光, 2018, 45 (2): 164- 176.
22 WU Z K, KITANO M, HAPPER W, et al.. Optical determination of alkali metal vapor number density using Faraday rotation. Applied Optics, 1986, 25 (23): 4484- 4492.
23 LI S J, WANG B, YANG X D, et al.. Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms. Physical Review A, 2006, 74 (3): 033821.
24 ACOSTA V M, BAUCH E, JARMOLA A, et al.. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond. Applied Physics Letters, 2010, 97 (17): 174104.
25 江敏. 基于高灵敏度原子磁力计的超低场核磁共振研究 [D]. 合肥: 中国科学技术大学, 2019.
26 王言章, 梁檬.. 基于Herriott型多通池的SERF原子磁力仪研究. 仪器仪表学报, 2020, 41 (6): 43- 49.
27 陈大勇, 缪培贤, 史彦超, 等.. 抽运–检测型原子磁力仪对电流源噪声的测量. 物理学报, 2022, 71 (2): 91- 97.
28 王建龙, 高洪宇, 王杰英, 等.. 一种激光泵浦的高灵敏度核磁共振磁力仪. 应用激光, 2021, 41 (4): 902- 908.
29 周姚秀, 刘皇风, 董金明, 等. 一种新的磁学现象——等温剩磁的异常特性 [C]// 中国地球物理学会. 1992年中国地球物理学会第八届学术年会论文集. 1992: 238.
30 王喜生, 李学军.. 等温剩磁获得曲线的累积对数高斯模型在泥河湾盆地磁组分识别中的运用. 地学前缘, 2003, (1): 163- 169.
31 李文, 穆桂金, 林永崇, 等.. 罗布泊自生胶黄铁矿对磁性参数χARM/SIRM指示意义的影响. 沉积学报, 2022, 40 (5): 1280- 1288.
32 WU J J, CHEN X D, YANG Y, et al.. Application of TEM based on HTS SQUID magnetometer in deep geological structure exploration in the Baiyun gold deposit, NE China. Journal of Earth Science, 2021, 32, 1- 7.
Outlines

/