Educational Data Management

Heterogeneous data generation tools for online education scenarios

  • Wei ZHOU ,
  • Ke WANG ,
  • Huiqi HU
Expand
  • School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Received date: 2024-07-03

  Online published: 2024-09-23

Abstract

In the digital education application domain, developers of platforms such as online classrooms face the challenges of privacy issues and existing datasets’ insufficient size in their pursuit of data-driven optimization. To address this, a set of heterogeneous data models adapted to the characteristics of education were constructed, and corresponding data generation tools (E-Tools) that can be used to simulate data interactions in complex educational scenarios were implemented. Experimental results have shown that the tool can maintain an efficient data generation speed (64–74 $ {\rm{MB}}\cdot {{\rm{s}}^{-1}} $) under a variety of data sizes, demonstrating good linear scaling ability, which validates the model’s effectiveness and the tool’s ability to generate larger data volumes. A heterogeneous data query load reflecting students’ learning behaviors was also designed to provide strong support for performance evaluation and the education platform’s optimization.

Cite this article

Wei ZHOU , Ke WANG , Huiqi HU . Heterogeneous data generation tools for online education scenarios[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(5) : 114 -127 . DOI: 10.3969/j.issn.1000-5641.2024.05.011

References

1 李志民.. 教育信息化与教育数字化转型升级. 中国教育信息化, 2024, 30 (1): 71- 75.
2 钱源, 施佺.. 基于多源异构数据源的高校决策支持服务平台研究. 中国教育信息化, 2020, (5): 50- 53.
3 YU J F, LUO G, XIAO T, et al. MOOCCube: A large-scale data repository for NLP applications in MOOCs [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (ACL), 2020: 3135-3142.
4 KHELIFATI A, KHAYATI M, DIGNOS A, et al.. TSM-Bench: Benchmarking time series database systems for monitoring applications. Proceedings of the VLDB Endowment, 2023, 16 (11): 3363- 3376.
5 POKORNY J. Data integration in a multi-model environment [C]// International Conference on Information Integration and Web Intelligence. Cham: Springer Nature Switzerland, 2023: 121-127.
6 LU J H, LIU Z H, XU P F, et al. UDBMS: Road to unification for multi-model data management [C]// Advances in Conceptual Modeling, ER 2018, Lecture Notes in Computer Science, Vol 11158. Cham: Springer, 2018: 285-294.
7 HOLUBOVA I, CONTOS P, SVOBODA M. Multi-model data modeling and representation: State of the art and research challenges [C]// Proceedings of the 25th International Database Engineering & Applications Symposium. ACM, 2021: 242-251.
8 ZHANG C, LU J H, XU P F, et al. UniBench: A benchmark for multi-model database management systems [C]// Performance Evaluation and Benchmarking for the Era of Artificial Intelligence, TPCTC 2018, Lecture Notes in Computer Science, Vol 11135. Cham: Springer, 2019: 7-23.
9 KIM B, KOO K, ENKHBAT U, et al.. M2Bench: A database benchmark for multi-model analytic workloads. Proceedings of the VLDB Endowment, 2022, 16 (4): 747- 759.
10 武法提, 黄石华.. 基于多源数据融合的共享教育数据模型研究. 电化教育研究, 2020, 41 (5): 59- 65.
11 黄石华, 武法提.. 场景化分析: 一种数据驱动下的学习行为解释性框架. 电化教育研究, 2023, 44 (5): 51- 59.
12 黄涛, 王一岩, 张浩, 等.. 智能教育场域中的学习者建模研究趋向. 远程教育杂志, 2020, 38 (1): 50- 60.
13 宋卓卿. 面向在线课程的学生学习行为建模研究 [D]. 广西 桂林: 桂林电子科技大学, 2023.
14 KRISHNA RAO L V, GOWTHAMI B V, HEMA B, et al. Analysis of student behavioural patterns by machine learning [C]// ICT Analysis and Applications, Lecture Notes in Networks and Systems, Vol 517. Singapore: Springer Nature Singapore, 2022: 59-68.
Outlines

/