Educational Infrastructure

Study on short-term electricity load forecasting based on SF-Transformer for intelligent education platform

  • Yanli FENG ,
  • Yu ZHOU ,
  • Fuxing HUANG ,
  • Junling WAN ,
  • Peisen YUAN
Expand
  • 1. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
    2. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China

Received date: 2024-07-04

  Online published: 2024-09-23

Abstract

Building an intelligent education platform is an important process in the promotion of the intelligence of education. However, the artificial intelligence model on which intelligent education platforms rely consumes a large amount of electricity and energy during its training process, therefore, it is of great significance to carry out a short-term power load prediction for building an intelligent education platform. However, the major issue is the weak correlations between some attributes and power load data when considering multiple attributes during short-term power load forecasting, and the Transformer cannot capture the temporal correlation of power load data, which leads to a lack of accuracy in power load forecasting. Therefore, a short-term power load forecasting model, SF-Transformer is proposed that is based on the SR (Székely and Rizzo) distance correlation coefficient, fusion temporal localization coding and Transformer. The SF-Transformer filters the attributes that affect the power load data by using the SR distance correlation coefficient and selects the attributes that have higher SR distance correlation coefficients with the power load data. The SF-Transformer adopts fusion time localization coding, thereby combining global time coding and local position coding, which helps the model to comprehensively obtain time and localization information regarding power load data. Experiments conducted on the dataset show that SF-Transformer has a lower RMSE (root mean square error) and MAE (mean absolute error), compared with those of other power load forecasting models over two-time durations.

Cite this article

Yanli FENG , Yu ZHOU , Fuxing HUANG , Junling WAN , Peisen YUAN . Study on short-term electricity load forecasting based on SF-Transformer for intelligent education platform[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(5) : 173 -182 . DOI: 10.3969/j.issn.1000-5641.2024.05.016

References

1 田永健, 付涛, 刘玉武, 等.. 基础教育数字化转型的实践探索. 中国电化教育, 2022, (8): 106- 132.
2 胡学钢, 刘菲, 卜晨阳.. 教育大数据中认知跟踪模型研究进展. 计算机研究与发展, 2020, 57 (12): 2523- 2546.
3 宋苏轩, 杨现民, 宋子强.. 教育信息化2.0背景下新一代高校智慧校园基础平台建设研究. 现代教育技术, 2019, 29 (8): 18- 24.
4 崔建伟, 赵哲, 杜小勇.. 支撑机器学习的数据管理技术综述. 软件学报, 2021, 32 (3): 604- 621.
5 高劲松, 方晓印, 刘思洋, 等.. 基于关联数据的馆藏文物资源知识关联与智能问答研究. 情报科学, 2021, 39 (5): 12- 20.
6 汪诚愚, 何晓丰, 宫学庆, 等.. 面向上下位关系预测的词嵌入投影模型. 计算机学报, 2020, 43 (5): 868- 883.
7 陈晓红, 曹廖滢, 陈姣龙, 等.. 我国算力发展的需求、电力能耗及绿色低碳转型对策. 中国科学院院刊, 2024, 39 (3): 528- 539.
8 宋杰, 李甜甜, 朱志良, 等.. 云数据管理系统能耗基准测试与分析. 计算机学报, 2013, 36 (7): 1485- 1499.
9 陈晓朋, 许可欣, 梁宇栋.. 人工智能促进数据中心绿色节能研究. 信息通信技术与政策, 2024, 50 (2): 33- 39.
10 PAPPAS S, EKONOMOU L, KARAMPELAS P, et al.. Electricity demand load forecasting of the hellenic power system using an ARMA model. Electric Power Systems Research, 2009, 80 (3): 256- 264.
11 LEE C M, KO C N.. Short-term load forecasting using lifting scheme and ARIMA models. Expert Systems With Applications, 2011, 38 (5): 5902- 5911.
12 CHAUHAN M, GUPTA S, SANDHU M.. Short-term electric load forecasting using support vector machines. ECS Transactions, 2022, 107 (1): 9731.
13 吴潇雨, 和敬涵, 张沛, 等.. 基于灰色投影改进随机森林算法的电力系统短期负荷预测. 电力系统自动化, 2015, 39 (12): 50- 55.
14 XIE Z Y, YANG Y, ZHANG Y L, et al.. Correction to: Deep learning on multi-view sequential data: A survey. Artificial Intelligence Review, 2022, 56 (8): 9009.
15 ELMAN J L.. Finding structure in time. Cognitive Science, 1990, 14 (2): 179- 211.
16 HOCHREITER S, SCHMIDHUBER J.. Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
17 BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2015-03-22)[2024-06-20]. https://arxiv.org/pdf/1409.0473v5.
18 陈卓, 孙龙祥.. 基于深度学习LSTM网络的短期电力负荷预测方法. 电子技术, 2018, 47 (1): 39- 41.
19 CHO K, VAN MERRIENBOER B, GULCEHRE C. Learning phrase representations using RNN encoder–decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1724-1734.
20 MOBARAK A, YOUSEF A O, MAJDI O.. Electrical load forecasting using LSTM, GRU, and RNN algorithms. Energies, 2023, 16 (5): 2283.
21 GONG G J, AN X N, MAHATO K N, et al.. Research on short-term load prediction based on Seq2seq model. Energies, 2019, 12 (16): 3199.
22 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st Conference on Neural Information Processing Systems. 2017: 6000-6010.
23 SZéKELY J G, RIZZO L M, BAKIROV K N.. Measuring and testing dependence by correlation of distances. The Annals of Statistics, 2007, 35 (6): 2769- 2794.
24 ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the 35th Association for the Advancement of Artificial Intelligence. 2021: 11106-11115.
25 WU H X, XU J H, WANG J M, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting [C]// Proceedings of the 34th Advances in Neural Information Processing Systems. 2021: 22419-22430.
Outlines

/