华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (3): 157-166.doi: 10.3969/j.issn.1000-5641.2025.03.018

• 物理学与电子学 • 上一篇    

基于Bayes推断的COVID-19流行病干预政策评估

罗俊藤, 唐明*()   

  1. 华东师范大学 物理与电子科学学院, 上海 200241
  • 收稿日期:2024-02-26 出版日期:2025-05-25 发布日期:2025-05-28
  • 通讯作者: 唐明 E-mail:mtang@ce.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(12231012, 11975099); 国家自然科学基金-国际合作项目(82161148012)

Evaluation of COVID-19 pandemic intervention policies based on Bayesian inference

Junteng LUO, Ming TANG*()   

  1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • Received:2024-02-26 Online:2025-05-25 Published:2025-05-28
  • Contact: Ming TANG E-mail:mtang@ce.ecnu.edu.cn

摘要:

为应对2019 年新型冠状病毒病 (corona virus disease 2019, COVID-19) 的大流行, 全球197个国家采取了各种防控政策, 取得了不同程度的抑制效果. 许多学者利用数学建模分析了各种非药物干预和疫苗接种政策对COVID-19传播的影响, 但这些研究主要侧重于定量评估干预政策对COVID-19再生数的影响. 建立了一个双层Bayes模型, 并基于Bayes推断分别定量评估了不同政策对COVID-19感染和恢复过程影响的有效性; 将干预措施分为公共卫生干预政策和管控政策两大类. 结果显示, 两类干预政策都可以降低COVID-19的感染率, 提高COVID-19的恢复率; 但干预政策的类型对传播过程和恢复过程的影响有明显的倾向性, 即公共卫生干预政策更有助于COVID-19的恢复过程, 大多数管控政策及部分公共卫生措施对COVID-19的传播过程影响较大.

关键词: COVID-19, 传播, 恢复, Bayes推断, 政策评估

Abstract:

In response to the 2019 novel coronavirus disease (COVID-19) pandemic, 197 countries have implemented various government control policies to achieve varying degrees of suppression. Many scholars have analyzed the impact of various non-pharmaceutical interventions and vaccination policies on COVID-19 using mathematical modeling. These studies have primarily focused on the quantitative assessment of the impact of interventions on the reproductive number of COVID-19 patients. This study establishes a two-layer Bayes model to quantitatively estimate the effectiveness of different policies on COVID-19 infection and recovery based on Bayesian inference. It categorizes intervention measures into two groups: public health intervention policies and control policies. The results show that both types of intervention policies can reduce the infection rate of COVID-19 and improve the recovery rate. However, each type of intervention policy has a distinct impact on the transmission and recovery processes. Specifically, public health intervention measures have a greater impact on COVID-19 recovery, while control policies and public health measures significantly affect the transmission of COVID-19.

Key words: COVID-19, transmission, recovery, Bayesian inference, policy evaluation

中图分类号: