1 |
HAN C X, WU C, GUO H N, et al.. HANet: A hierarchical attention network for change detection with bitemporal very-high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3867- 3878.
|
2 |
XU J Z, LU W H, LI Z B, et al. Building damage detection in satellite imagery using convolutional neural networks [EB/OL]. (2019-10-14)[2024-12-24]. https://arxiv.org/abs/1910.06444.
|
3 |
DE BEM P, DE CARVALHO O Jr, FONTES GUIMARÃES R, et al.. Change detection of deforestation in the Brazilian Amazon using landsat data and convolutional neural networks. Remote Sensing, 2020, 12 (6): 901.
|
4 |
CHEN H, SHI Z W.. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing, 2020, 12 (10): 1662.
|
5 |
JIN S M, YANG L M, DANIELSON P, et al.. A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of Environment, 2013, 132, 159- 175.
|
6 |
LYU Z Y, LIU T F, SHI C, et al.. Novel land cover change detection method based on k-means clustering and adaptive majority voting using bitemporal remote sensing images. IEEE Access, 2019, 7, 34425- 34437.
|
7 |
YU C Q, WANG J B, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation [C]// Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 334-349.
|
8 |
DEVRIES B, DECUYPER M, VERBESSELT J, et al.. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sensing of Environment, 2015, 169, 320- 334.
|
9 |
CAYE DAUDT R, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection [C]// 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 4063-4067.
|
10 |
SHI W Z, ZHANG M, ZHANG R, et al.. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sensing, 2020, 12 (10): 1688.
|
11 |
PENG D F, ZHANG Y J, GUAN H Y.. End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sensing, 2019, 11 (11): 1382.
|
12 |
DAUDT R C, LE SAUX B, BOULCH A, et al. Urban change detection for multispectral earth observation using convolutional neural networks [C]// IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018: 2115-2118.
|
13 |
VENUGOPAL N.. Automatic semantic segmentation with DeepLab dilated learning network for change detection in remote sensing images. Neural Processing Letters, 2020, 51 (3): 2355- 2377.
|
14 |
WANG Y H, GAO L R, HONG D F, et al.. Mask DeepLab: End-to-end image segmentation for change detection in high-resolution remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102582.
|
15 |
KE Q T, ZHANG P.. CS-HSNet: A cross-Siamese change detection network based on hierarchical-split attention. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9987- 10002.
|
16 |
VENUGOPAL N.. Sample selection based change detection with dilated network learning in remote sensing images. Sensing and Imaging, 2019, 20 (1): 31.
|
17 |
CHEN J, YUAN Z Y, PENG J, et al.. DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14, 1194- 1206.
|
18 |
CHEN H, QI Z P, SHI Z W.. Remote sensing image change detection with transformers. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, 5607514.
|
19 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows [C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021: 10012-10022.
|
20 |
ZHANG C, WANG L J, CHENG S L, et al.. SwinSUNet: Pure transformer network for remote sensing image change detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5224713.
|
21 |
LIU M X, CHAI Z Q, DENG H J, et al.. A CNN-transformer network with multiscale context aggregation for fine-grained cropland change detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4297- 4306.
|
22 |
BAZI Y, BASHMAL L, AL RAHHAL M M, et al.. Vision transformers for remote sensing image classification. Remote Sensing, 2021, 13 (3): 516.
|
23 |
JI S P, WEI S Q, LU M.. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (1): 574- 586.
|