[1] ZHANG Z F, QIU P X, XU B G, et al. Vertex-distinguishing total coloring of graphs [J]. Ars Combin, 2008, 87: 33-45. [2]ZHANG Z F, LI J G, CHEN X E, et al. D(\beta)-vertex-distinguishing total coloring of graphs [J]. Sci China Ser A, 2006, 49(10): 1430-1440. [3] KEMNITZ A, MARANGIO M. d-Strong total colorings of graphs [J]. Discrete Mathematics, 2015, 338(10): 1690-1698. [4]ZHANG Z F, CHEN X E, LI J W, et al. On adjacent-vertex-distinguishing total coloring of graphs [J]. Sci China Ser A, 2005, 48(3): 289-299. [5]SCH\"{A]FER O. d-starke Totalf\"{a]rbungen von Graphen [D].[S.l.]: TU Braunschweig, 2012. [6] ZU Y, CHEN X E. D(5)-vertex distinguishing total coloring of cycle [J].J Jiamusi Univ (Nat Science Edition), 2008, 26(5): 677-679. [7] CHEN X E, HUANG X J, WANG Z W. d-strong total colorings of cycles when 24\leq d\leq 34$ [Z]. 2014. [8]DENG Z, SINGH V P, BENGTSSON L. Numerical solution of fractional advection-dispersion equation [J]. J Hydraulic Engrg, 2004, 130:422-431.[9]MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equation [J]. J Comput Appl Math, 2004, 172: 65-77.[10]MEERSCHAERT M M, TADJERAN C. Finite difference approximations for two-sided space-fractional partial differcntial equations [J]. J Comput Appl Math, 2006, 56: 80-90.[11]CHEN C M, LIU F, BURRAGE K. Finite difference methods and a fourieranalysis for the fractional reaction-subdiffusion equation [J]. Appl Math Comput, 2008, 198: 754-769.[12]CHEN M H, DENG W. Fourth order difference approximations for space Riemann-Liouville derivatives based on weighted and shifted Lubich difference operators [J]. Commun Comput Phys, 2014, 16: 516-540.[13]SU L J, WANG W Q, YANG Z. Finite difference approximations for the fractional advection-diffusion equation [J]. Phys Lett A, 2009, 373:4405-4408.[14]ZHOU H, TIAN W Y, DENG W H. Quasi-compact finite difference schemes for space fractional diffusion equations [J]. Journal of Scientific Computing, 2013, 56(1): 45-66.[15]PODLUBNY I. Fractional Differential Equations [M]. New York:Academic Press, 1999.[16]MILLER K, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: Wiley, 1993.[17]SAMKO S, KILBAS A, MARICHEV O. Fractional Integrals and Derivatives:Theory and Applications [M]. London: Gordon and Breach, 1993.[18]郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解~[M]. 北京:科学出版社, 2011. |