[1] YIN G, HOU L, LIU M, et al. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments[J]. Environmental Pollution, 2016, 214: 265-272. DOI: 10.1016/j.envpol.2016.04.041. [2] YIN G, HOU L, LIU M, et al. DNRA in intertidal sediments of the Yangtze Estuary[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 1988-1998. DOI: 10.1002/2017JG003766. [3] VANCE M E, KUIKEN T, VEJERANO E P, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory[J]. Beilstein J Nanotechnol, 2015(6): 1769-1780. [4] MUELLER N C, NOWACK B. Exposure modeling of engineered nanoparticles in the environment[J]. Environmental Science & Technology, 2008, 42(12): 4447-4453. [5] MCWILLIAMS J K. Characterizing the biochemical and toxicological effects of nanosilver in vivo using zebrafish (Danio rerio) and in vitro using rainbow trout (Oncorhynchus mykiss)[R]. Ottawa: University of Ottawa, 2014. [6] 唐诗璟, 郑雄, 陈银广. 水体环境中纳米银的来源、迁移转化及毒性效应的研究进展[J]. 化工进展, 2013(11): 2727-2733 [7] FABREGA J, LUOMA S N, TYLER C R, et al. Silver nanoparticles: behaviour and effects in the aquatic environment[J]. Environment International, 2011, 37(2): 517-531. DOI: 10.1016/j.envint.2010.10.012. [8] 李墨青. 纳米银对SBR系统水处理效能及微生物菌群的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [9] LIANG Z, DAS A, HU Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J]. Water Research, 2010, 44(18): 5432-5438. DOI: 10.1016/j.watres.2010.06.060. [10] 张汝嘉. 纳米银对硝化细菌以及SBR反应器中的活性污泥的抑制作用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [11] ZHENG Y, HOU L. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments[J]. Science Advances, 2017, 3(8): e1603229. DOI: 10.1126/sciadv.1603229. [12] CHOI O, HU Z Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008, 42(12): 4583-4588. [13] BEDDOW J, STOLPE B, COLE P A, et al. Nanosilver inhibits nitrification and reduces ammonia-oxidising bacterial but not archaeal amoA gene abundance in estuarine sediments[J]. Environmental Microbiology, 2017, 19(2): 500-510. DOI: 10.1111/1462-2920.13441. [14] LIU S, WANG C, HOU J, et al. Effects of Ag and Ag2S nanoparticles on denitrification in sediments[J]. Water Research, 2018, 137: 28-36. DOI: 10.1016/j.watres.2018.02.067. [15] VANDEVOORT A R, ARAI Y. Effect of silver nanoparticles on soil denitrification kinetics[J]. Industrial Biotechnology, 2012, 8(6): 358-364. DOI: 10.1089/ind.2012.0026. [16] ZHENG Y, JIANG X, HOU L, et al. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1632-1645. DOI: 10.1002/2015JG003300. [17] BARGU S, WHITE J R, LI C, et al. Effects of freshwater input on nutrient loading, phytoplankton biomass, and cyanotoxin production in an oligohaline estuarine lake[J]. Hydrobiologia, 2011, 661(1): 377-389. DOI: 10.1007/s10750-010-0545-8. [18] YIN G, HOU L, LIU M, et al. A novel membrane inlet mass spectrometer method to measure 15NH4+ for isotope-enrichment experiments in aquatic ecosystems[J]. Environmental Science & Technology, 2014, 48(16): 9555-9562. [19] HOU L J, LIU M, XU S Y, et al. The effects of semi-lunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze estuary, China[J]. Estuarine Coastal and Shelf Science, 2007, 73(3/4): 607-616. [20] 代岚. 硫化物测定的主要影响因素[J]. 辽宁化工, 2009, 38(11): 838-839. DOI: 10.3969/j.issn.1004-0935.2009.11.024 [21] YANG Y, LI M, MICHELS C, et al. Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2234-2239. DOI: 10.1002/etc.2678. [22] YU Y, JING W, XIU Z M, et al. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J]. Environmental Toxicology & Chemistry, 2013, 32(7): 1488-1494. [23] CHEN J, TANG Y, LI Y, et al. Impacts of different nanoparticles on functional bacterial community in activated sludge[J]. Chemosphere, 2014, 104: 141-148. DOI: 10.1016/j.chemosphere.2013.10.082. [24] 白洁, 田延昭, 孙鹏飞, 等. 纳米银对胶州湾西北部海区及河口区沉积物反硝化能力和功能基因丰度的影响[J]. 环境科学, 2018, 39(11): 4956-4963 [25] 郭志. 纳米银的环境毒理及其潜在的应用研究[D]. 长沙: 湖南大学, 2017. [26] XIU Z, ZHANG Q, PUPPALA H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano Letters, 2012, 12(8): 4271-4275. DOI: 10.1021/nl301934w. [27] NATIONS S, WAGES M, CAÑAS J E, et al. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis[J]. Chemosphere, 2011, 83(8): 1053-1061. DOI: 10.1016/j.chemosphere.2011.01.061. [28] YANG Y, WANG J, XIU Z, et al. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J]. Environmental Toxicology and Chemistry, 2013, 32(7): 1488-1494. [29] LOK C, HO C, CHEN R, et al. Silver nanoparticles: partial oxidation and antibacterial activities[J]. Journal of Biological Inorganic Chemistry, 2007, 12(4): 527-534. DOI: 10.1007/s00775-007-0208-z. [30] 陶怡乐, 温东辉. 细菌硝酸盐异化还原成铵过程及其在河口生态系统中的潜在地位与影响[J]. 微生物学通报, 2016, 43(1): 172-181 [31] WOODS D D. The reduction of nitrate to ammonia by Clostridium welchii[J]. Biochemical Journal, 1938, 32(11): 2000-2012. DOI: 10.1042/bj0322000. [32] TIEDJE J M, SEXSTONE A J, MYROLD D D, et al. Denitrification: ecological niches, competition and survival[J]. Antonie Van Leeuwenhoek, 1983, 48(6): 569-583. DOI: 10.1007/BF00399542. [33] RADNIECKI T S, STANKUS D P, NEIGH A, et al. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea[J]. Chemosphere, 2011, 85(1): 43-49. DOI: 10.1016/j.chemosphere.2011.06.039. [34] 黄俊, 衣俊, 强丽媛, 等. 粒径和包裹物对纳米银在海洋微藻中的毒性影响[J]. 环境科学, 2016, 37(5): 1968-1977 |