| 1 | 朱莎, 余丽芹, 石映辉. 智能导学系统: 应用现状与发展趋势——访美国智能导学专家罗纳德·科尔教授、亚瑟·格雷泽教授和胡祥恩教授. 开放教育研究, 2017, (5): 4- 10. | 
																													
																						| 2 | 罗照盛. 认知诊断评价理论基础 [M]. 北京: 北京师范大学出版社, 2019: 3-8. | 
																													
																						| 3 | PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing [C]//Proceedings of the 28th International Conference on Neural Information Processing System (NeurIPS). Cambridge, MA: MIT Press, 2015: 505-513. | 
																													
																						| 4 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2016-05-19)[2021-06-22]. http://arxiv.org/abs/1409.0473. | 
																													
																						| 5 | SHA L, HONG P Y. Neural knowledge tracing [C]//LNCS 10512: International Conference on Brain Function Assessment in Learning (BFAL). Berlin: Springer, 2017: 108-117. | 
																													
																						| 6 | 刘恒宇, 张天成, 武培文, 等. 知识追踪综述. 华东师范大学学报(自然科学版), 2019, (5): 1- 15. | 
																													
																						| 7 | YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models [C]//International Conference on Artificial Intelligence in Education, 2013: Artificial Intelligence in Education. Berlin: Springer, 2013: 171-180. | 
																													
																						| 8 | CORBETT A T, ANDERSON J R. Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 1994, 4 (4): 253- 278. | 
																													
																						| 9 | DE BAKER R S J, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing [C]//International Conference on Intelligent Tutoring Systems, 2008: Intelligent Tutoring Systems. Berlin: Springer, 2008: 406–415. | 
																													
																						| 10 | PARDOS Z A, HEFFERNAN N T. KT-IDEM: Introducing item difficulty to the knowledge tracing model [C]// International Conference on User Modeling, Adaptation, and Personalization, 2011: User Modeling, Adaption and Personalization. Berlin: Springer, 2011: 243-254. | 
																													
																						| 11 | SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization [C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2007: 1257-1264. | 
																													
																						| 12 | CHEN Y, LIU Q, HUANG Z, et al. Tracking knowledge proficiency of students with educational priors [C]//Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM). ACM, 2017: 989-998. | 
																													
																						| 13 | KHAJAH M, LINDSEY R V, MOZER M C. How deep is knowledge tracing [C]//Proceedings of the 9th International Conference on Educational Data Mining (EDM). Worcester, MA: IEDMS, 2016: 94-101. | 
																													
																						| 14 | LEE J, YEUNG D Y. Knowledge query network for knowledge tracing: How knowledge interacts with skills [C]//Proceedings of the 9th International Conference on Learning Analytics and Knowledge (LAK). ACM, 2019: 491-500. | 
																													
																						| 15 | 刘铁园, 陈威, 常亮, 等. 基于深度学习的知识追踪研究进展 [J]. 计算机研究与发展, 2022, 59(1): 81-104. | 
																													
																						| 16 | LIU D, DAI H H, ZHANG Y P, et al. Deep knowledge tracking based on attention mechanism for student performance prediction [C]//Proceedings of the 2nd International Conference on Computer Science and Educational Informatization (CSEI). IEEE, 2020: 95-98. | 
																													
																						| 17 | ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing [C]//Proceedings of the 26th International Conference on World Wide Web (WWW). ACM, 2017: 765-774. | 
																													
																						| 18 | AI F Z, CHEN Y S, GUO Y C, et al. Concept-aware deep knowledge tracing and exercise recommendation in an online learning system [C]//Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019). Worcester, MA: IEDMS, 2019: 240-245. | 
																													
																						| 19 | ABDELRAHMAN G, WANG Q. Knowledge tracing with sequential key-value memory networks [C]//Proceedings of the 42nd International Conference on Research and Development in Information Retrieval (SIGIR). ACM, 2019: 175-184. | 
																													
																						| 20 | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [C]//International Conference on Education Data Mining (EDM). Montreal: Word Press, 2019: 1-6. | 
																													
																						| 21 | CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing [C]//Proceedings of the 7th ACM Conference on Learning @ Scale (L@S). ACM, 2020: 341-344. | 
																													
																						| 22 | PU S, YUDELSON M, OU L, et al. Deep Knowledge tracing with transformers [C]//Proceedings of the 21st International Conference on Artificial Intelligence in Education (AIED). Berlin: Springer, 2020: 252-256. | 
																													
																						| 23 | ZHANG L, XIONG X L, ZHAO S Y, et al. Incorporating rich features into deep knowledge tracing [C]//Proceedings of the 4th ACM Conference on Learning @ Scale (L@S). ACM, 2017: 169-172. | 
																													
																						| 24 | NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior [C]//Proceedings of the International World Wide Web Conference. ACM, 2019: 3101-3107. | 
																													
																						| 25 | CHENG S, LIU Q, CHEN E H. Domain adaption for knowledge tracing [EB/OL]. (2020-01-14)[2021-06-22]. https://arxiv.org/abs/2001.04841. | 
																													
																						| 26 | TONG H S, ZHOU Y, WANG Z. Exercise hierarchical feature enhanced knowledge tracing [C]//Proceedings of the 21st International Conference on Artificial Intelligence in Education (AIED). Berlin: Springer, 2020: 324-328. | 
																													
																						| 27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778. DOI: 10.1109/CVPR.2016.90. | 
																													
																						| 28 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [C]//European Conference on Computer Vision (ECCV). Berlin: Springer, 2016: 630-645. | 
																													
																						| 29 | KINGMA D P, JIMMY B. Adam: A method for stochastic optimization [EB/OL]. (2017-01-30)[2021-07-11]. https://arxiv.org/abs/1412.6980. |