1 |
朱莎, 余丽芹, 石映辉. 智能导学系统: 应用现状与发展趋势——访美国智能导学专家罗纳德·科尔教授、亚瑟·格雷泽教授和胡祥恩教授. 开放教育研究, 2017, (5): 4- 10.
|
2 |
罗照盛. 认知诊断评价理论基础 [M]. 北京: 北京师范大学出版社, 2019: 3-8.
|
3 |
PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing [C]//Proceedings of the 28th International Conference on Neural Information Processing System (NeurIPS). Cambridge, MA: MIT Press, 2015: 505-513.
|
4 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2016-05-19)[2021-06-22]. http://arxiv.org/abs/1409.0473.
|
5 |
SHA L, HONG P Y. Neural knowledge tracing [C]//LNCS 10512: International Conference on Brain Function Assessment in Learning (BFAL). Berlin: Springer, 2017: 108-117.
|
6 |
刘恒宇, 张天成, 武培文, 等. 知识追踪综述. 华东师范大学学报(自然科学版), 2019, (5): 1- 15.
|
7 |
YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models [C]//International Conference on Artificial Intelligence in Education, 2013: Artificial Intelligence in Education. Berlin: Springer, 2013: 171-180.
|
8 |
CORBETT A T, ANDERSON J R. Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 1994, 4 (4): 253- 278.
|
9 |
DE BAKER R S J, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing [C]//International Conference on Intelligent Tutoring Systems, 2008: Intelligent Tutoring Systems. Berlin: Springer, 2008: 406–415.
|
10 |
PARDOS Z A, HEFFERNAN N T. KT-IDEM: Introducing item difficulty to the knowledge tracing model [C]// International Conference on User Modeling, Adaptation, and Personalization, 2011: User Modeling, Adaption and Personalization. Berlin: Springer, 2011: 243-254.
|
11 |
SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization [C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2007: 1257-1264.
|
12 |
CHEN Y, LIU Q, HUANG Z, et al. Tracking knowledge proficiency of students with educational priors [C]//Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM). ACM, 2017: 989-998.
|
13 |
KHAJAH M, LINDSEY R V, MOZER M C. How deep is knowledge tracing [C]//Proceedings of the 9th International Conference on Educational Data Mining (EDM). Worcester, MA: IEDMS, 2016: 94-101.
|
14 |
LEE J, YEUNG D Y. Knowledge query network for knowledge tracing: How knowledge interacts with skills [C]//Proceedings of the 9th International Conference on Learning Analytics and Knowledge (LAK). ACM, 2019: 491-500.
|
15 |
刘铁园, 陈威, 常亮, 等. 基于深度学习的知识追踪研究进展 [J]. 计算机研究与发展, 2022, 59(1): 81-104.
|
16 |
LIU D, DAI H H, ZHANG Y P, et al. Deep knowledge tracking based on attention mechanism for student performance prediction [C]//Proceedings of the 2nd International Conference on Computer Science and Educational Informatization (CSEI). IEEE, 2020: 95-98.
|
17 |
ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing [C]//Proceedings of the 26th International Conference on World Wide Web (WWW). ACM, 2017: 765-774.
|
18 |
AI F Z, CHEN Y S, GUO Y C, et al. Concept-aware deep knowledge tracing and exercise recommendation in an online learning system [C]//Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019). Worcester, MA: IEDMS, 2019: 240-245.
|
19 |
ABDELRAHMAN G, WANG Q. Knowledge tracing with sequential key-value memory networks [C]//Proceedings of the 42nd International Conference on Research and Development in Information Retrieval (SIGIR). ACM, 2019: 175-184.
|
20 |
PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [C]//International Conference on Education Data Mining (EDM). Montreal: Word Press, 2019: 1-6.
|
21 |
CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing [C]//Proceedings of the 7th ACM Conference on Learning @ Scale (L@S). ACM, 2020: 341-344.
|
22 |
PU S, YUDELSON M, OU L, et al. Deep Knowledge tracing with transformers [C]//Proceedings of the 21st International Conference on Artificial Intelligence in Education (AIED). Berlin: Springer, 2020: 252-256.
|
23 |
ZHANG L, XIONG X L, ZHAO S Y, et al. Incorporating rich features into deep knowledge tracing [C]//Proceedings of the 4th ACM Conference on Learning @ Scale (L@S). ACM, 2017: 169-172.
|
24 |
NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior [C]//Proceedings of the International World Wide Web Conference. ACM, 2019: 3101-3107.
|
25 |
CHENG S, LIU Q, CHEN E H. Domain adaption for knowledge tracing [EB/OL]. (2020-01-14)[2021-06-22]. https://arxiv.org/abs/2001.04841.
|
26 |
TONG H S, ZHOU Y, WANG Z. Exercise hierarchical feature enhanced knowledge tracing [C]//Proceedings of the 21st International Conference on Artificial Intelligence in Education (AIED). Berlin: Springer, 2020: 324-328.
|
27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
|
28 |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [C]//European Conference on Computer Vision (ECCV). Berlin: Springer, 2016: 630-645.
|
29 |
KINGMA D P, JIMMY B. Adam: A method for stochastic optimization [EB/OL]. (2017-01-30)[2021-07-11]. https://arxiv.org/abs/1412.6980.
|