华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (2): 14-22.doi: 10.3969/j.issn.1000-5641.2024.02.002

• 数学 • 上一篇    下一篇

圈与路的点被多重集可区别的E-全染色

陈祥恩(), 曹静   

  1. 1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2022-04-24 出版日期:2024-03-25 发布日期:2024-03-18
  • 作者简介:陈祥恩, 男, 教授, 硕士生导师, 研究方向为图论及其应用. E-mail: chenxe@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金(11761064)

${\rm{E}} $ -total coloring of cycles and paths which are vertex-distinguished by multiple sets

Xiang’en CHEN(), Jing CAO   

  1. 1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2022-04-24 Online:2024-03-25 Published:2024-03-18

摘要:

$ G $${\rm{E}}$ -全染色是指使得相邻顶点染以不同色, 每条边与它的端点染以不同的颜色的全染色. 设$ f $是图$G $${\rm{E}} $ -全染色, 图$ G $的一个顶点$ x $$ f $下的多重色集合$ \widetilde C( x ) $是指点$ x $的颜色以及与$ x $关联的边的颜色构成的多重集. 若图$ G $的任意两个不同顶点在$f $下的多重色集合不同, 则$ f $称为图$ G $的点被多重集可区别的${\rm{E}} $ -全染色. 对图$ G $进行点被多重集可区别的${\rm{E}} $-全染色所需用的最少的颜色的数目叫做$G $的点被多重集可区别的${\rm{E}} $-全色数. 利用反证法和构造具体染色的方法, 讨论了圈与路的点被多重集可区别的${\rm{E}} $ -全染色问题, 给出了圈与路的最优的点被多重集可区别的${\rm{E}} $-全染色方案, 并确定了圈与路的点被多重集可区别的${\rm{E}} $ -全色数

关键词: 圈, 路, 多重色集合, ${\rm{E}} $ -全染色, 点被多重集可区别的${\rm{E}} $ -全染色

Abstract:

An ${\rm{E}} $ -total coloring of a graph $G $ is an assignment of several colors to all vertices and edges of $G $ such that no two adjacent vertices receive the same color and no edge receive the same color as one of its endpoints. If $f $ is an ${\rm{E}} $ -total coloring of a graph $G $, the multiple color set of a vertex $x $ of $G $ under $f $ is the multiple set composed of colors of $x $ and the edges incident with $x $. If any two distinct vertices of $G $ have distinct multiple color sets under an ${\rm{E}} $ -total coloring $f $ of a graph $G $, then $f $ is called an ${\rm{E}} $ -total coloring of $G $ vertex-distinguished by multiple sets. An ${\rm{E}} $ -total chromatic number of $G $ vertex-distinguished by multiple sets is the minimum number of the colors required in an ${\rm{E}} $ -total coloring of $G $ vertex-distinguished by multiple sets. The ${\rm{E}} $ -total colorings of cycles and paths vertex-distinguished by multiple sets are discussed by use of the method of contradiction and the construction of concrete coloring. The optimal${\rm{E}} $ -total colorings of cycles and paths vertex-distinguished by multiple sets are given and the ${\rm{E}} $ -total chromatic numbers of cycles and paths vertex-distinguished by multiple sets are determined in this paper.

Key words: cycle, path, multiple color set, ${\rm{E}} $ -total coloring, ${\rm{E}} $ -total coloring vertex-distinguished by multiple sets

中图分类号: