[ 1 ] DEAN J, GHEMAWAT S. MapReduce: Simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51(1): 107-113.
[ 2 ] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: Cluster computing with working sets [C]//Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley: USENIX Association, 2010: 10.
[ 3 ] SHVACHKO K, KUANG H, RADIA S, et al. The hadoop distributed file system [C]//Proceedings of IEEE Conference on MSST. 2010: 1-10.
[ 4 ] 胡健, 和轶东. SAP内存计算------HANA [M]. 北京: 清华大学出版社, 2013.
[ 5 ] FARBER F, CHA S K, PRIMSCH J, et al. SAP HANA database: Data management for modern business applications [J]. ACM Sigmod Record, 2012, 40(4): 45-51.
[ 6 ] GLIGOR G, TEODORU S. Oracle exalytics: Engineered for speed-of-thought analytics [J]. Database Systems Journal, 2011, 2(4): 3-8.
[ 7 ] WANG L, ZHOU M Q, ZHANG Z J, et al. Elastic pipelining in in-memory DataBase cluster [R]. 2016.
[ 8 ] TRAVERSO M. Presto: Interacting with petabytes of data at Facebook [EB/OL].(2013-11-07)[2016-06-10]. http://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920.
[ 9 ] ARMBRUST M, XIN R S, LIAN C, et al. Spark SQL: Relational data processing in spark [C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. ACM, 2015: 1383-1394.
[10] YANG F, TSCHETTER E, LEAUTE X, et al. Druid: A real-time analytical data store [C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 2014.
[11] GARCIA-MOLINA H, ULLMAN J D, WIDOM J. Database System Implementation [M]. Upper Saddle River, NJ: Prentice Hall, 2000.
[12] NAGA P N. Real-time Analytics at Massive Scale with Pinot [EB/OL]. [2016-06-10]. https://engineering.linkedin.com/analytics/real-time-analytics-massive-scale-pinot.
[13] KREPS J, NARKHEDE N, RAO J, et al. Kafka: A distributed messaging system for log processing [C]//Proceedings of the NetDB. 2011: 1-7.
[14] LAMB A, FULLER M, VARADARAJAN R, et al. The vertica analytic database: C-store 7 years later [C]//Proceedings of the VLDB Endowment. 2012: 1790-1801.
[15] CHANG L, WANG Z, MA T, et al. Hawq: A massively parallel processing sql engine in hadoop [C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 2014.
[16] STONEBRAKER M, WEISBERG A. The VoltDB main memory DBMS [J]. IEEE Data Eng Bull, 2013: 21-27.
[17] BRYANT R E, O′HALLARON D R. 深入理解计算机系统[M], 北京:机械工业出版社,2013.
[18] ESWARAN K P, GRAY J N, LORIE R A, et al. The notions of consistency and predicate locks in a database system [J]. Communications of the ACM, 1976, 19(11): 624-633.
[19] STONEBRAKER M. One Size Fits None-(Everything You Learned in Your DBMS Class is Wrong) [R/OL]. (2013-05-30)[2016-07-01]. http://slideshot.epfl.ch/talks/166.
[20] WEIKUM G, VOSSEN G. Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery [M]. San Francisco: Morgan Kaufmann Publishers, 2002.
[21] DIACONU C, FREEDMAN C, ISMERT E, et al. Hekaton: SQL server’s memory-optimized OLTP engine [C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 2013.
[22] MICHAEL M M. High performance dynamic lock-free hash tables and list-based sets [C]//Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures. 2002: 73-82.
[23] LAMPSON BW, STURGIS H E. Crash Recovery in a Distributed Data Storage System [R]. Palo Alto, California: Xerox Palo Alto Research Center, 1979.
[24] SKEEN D. Nonblocking commit protocols [C]//Proceedings of the 1981 ACM SIGMOD International Conference on Management of Data. 1981.
[25] HAN J, HAIHONG E, LE G, et al. Survey on NoSQL database [C]//Proceedings of the 2011 6th International Conference on Pervasive Computing and Applications. 2011: 363-366.
[26] O’NEIL E J, O’NEIL P E, WEIKUM G. The LRU-K page replacement algorithm for database disk buffering [C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. 1993: 297-306. |