[ 1 ] PARDOUX E, PENG S G. Adaped solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990, 14: 55-61.
[ 2 ] El KAROUI N, PENG S G, QUENEZM C. Backward stochastic differential equations in finance[J].Mathematical Finance, 1997, 7(1): 1-71.
[ 3 ] LEPELTIER J P, SAN MART´IN J. Backward stochastic differential equations with continuous coefficient[J]. Statistics and Probability Letters, 1997, 32: 425-430.
[ 4 ] BRIAND P, HU Y. BSDE with quadratic growth and unbounded terminal value[J]. Probability Theory and Related Fields, 2006, 136(4): 604-618.
[ 5 ] JIA G Y. A uniqueness theorem for the solution of backward stochastic differential equations[J]. Comptes Rendus Mathematigue, 2008, 346(7): 439-444.
[ 6 ] CHEN S K. Lp solutions of one-dimensional backward stochastic differential equations with continuous coefficients[J]. Stochastic Analysis and Applications, 2010, 28: 820-841.
[ 7 ] MA M, FAN S J, SONG X. Lp (p > 1) solutions of backward stochastic differential equations with monotonic and uniformly continuous generators[J]. Bulletin des Sciences Mathematiques, 2013, 137(2): 97-106.
[ 8 ] FAN S J. Lp solutions of multidimensional BSDEs with weak monotonicity and general growth generators[J]. Journal of Mathematical Analysis and Applications, 2015, 432: 156-178.
[ 9 ] FAN S J, JIANG L. BSDEs with uniformly continuous generators and integrable parameters [J]. Scientia Sinica Mathematica, 2012, 42(2): 119-131. |