[1] PARKES E J, DUFFY B R. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations [J]. Computer Physics Communications, 1996, 98(3): 288-300. [2] EL S A. Modified extended tanh-function method for solving nonlinear partial differential equations [J]. Chaos Solitons & Fractals, 2007, 31(5): 1256-1264. [3] ABDOU M A. The extended tanh method and its applications for solving nonlinear physical models [J]. Applied Mathematics & Computation, 2007, 190(1): 988-996. [4] LIU S K, FU Z T, LIU S D, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J]. Physics Letters A, 2001, 289: 69-74. [5] FU Z T, LIU S K, LIU S D, et al. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J]. Physics Letters A, 2001, 290(1/2): 72-76. [6] YAN Z. The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system [J]. Chaos Solitons & Fractals, 2003, 15(3): 575-583. [7] HE J H, WU X H. Exp-function method for nonlinear wave equations [J]. Chaos Solitons & Fractals, 2006, 30(3): 700-708. [8] MA W X, HUANG T, YI Z. A multiple exp-function method for nonlinear differential equations and its appli-cation [J]. Physica Scripta, 2010, 82(6): 5468-5478. [9] LI Z B, LIU Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations [J]. Computer Physics Communications, 2002, 148(2): 256-266. [10] LIU Y P, LI Z B. A Maple package for finding exact solitary wave solutions of coupled nonlinear evolution equations [J]. Computer Physics Communications, 2003, 155(1): 65-76. [11] LIU Y P, LI Z B. An automated Jacobi elliptic function method for finding periodic wave solutions to nonlinear evolution equation [J]. Chinese Physics Letters, 2002, 19(9): 1228-1230. [12] BALDWIN D, GOKTAS U, HEREMAN W, et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs [J]. Journal of Symbolic Computation, 2004, 37(6): 669-705. [13] LI Z B, LIU Y P. RAEEM: A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations [J]. Computer Physics Communications, 2004, 163(3): 191-201. [14] ZHANG J X, GU Z M, ZHENG C. Survey of research progress on cloud computing [J]. Application Research of Computers, 2010, 27(2): 429-433. [15] BERA S, MISRA S, RODRIGUES J J P C. Cloud computing applications for smart grid: A Survey [J]. IEEE Transactions on Parallel & Distributed Systems, 2015, 26(5): 1477-1494. [16] OWENS J D, LUEBKE D, GOVINDARAJU N, et al. A survey of general-purpose computation on graphics hardware [J]. Computer Graphics Forum, 2007, 26(1): 80-113. [17] CANT-PAZ E. A survey of parallel genetic algorithms [J]. Calculateurs Paralleles Reseaux Et Systems Repartis, 1999, 10(4): 429-449. [18] UPADHYAYA S R. Parallel approaches to machine learning——A comprehensive survey [J]. Journal of Parallel & Distributed Computing, 2013, 73(3): 284-292. [19] AGRAWAL R, SHAFER J C. Parallel mining of association rules [J]. Knowledge & Data Engineering IEEE Transactions on, 1996, 8(6): 962-969. [20] BERGHEN F V, BERSINI H. CONDOR, a new parallel, constrained extension of Powell's UOBYQA algo-rithm: Experimental results and comparison with the DFO algorithm [J]. Journal of Computational & Applied Mathematics, 2005, 181(1): 157-175. [21] CHALABINE M, KESSLER C. A Survey of reasoning in parallelization [C]//Proceedings of the Eighth Acis International Conference on Software Engineering. IEEE Computer Society, 2007(3): 629-634. [22] WING O, HUANG J W. A computation model of parallel solution of linear equations [J]. IEEE Transactions on Computers, 1980, 29(7): 632-638. [23] LI G J, WAH B W. Computational efficiency of parallel combinatorial or-tree searches [J]. IEEE Transactions on Software Engineering, 1990, 16(1): 13-31. [24] HOFFMANN K H, ZOU J. Parallel solution of variational inequality problems with nonlinear source terms [J]. Ima Journal of Numerical Analysis, 1996, 16(1): 31-45. [25] GALIL Z, PAN V. Parallel evaluation of the determinant and of the inverse of a matrix [J]. Information Processing Letters, 1989, 30(1): 41-45. [26] WANGWQ. A parallel alternating difference implicit scheme for a dispersive equation[J].Mathematica Numerica Sinica, 2005, 27(2): 129-140. |