Journal of East China Normal University(Natural Science) ›› 2021, Vol. 2021 ›› Issue (1): 67-81.doi: 10.3969/j.issn.1000-5641.202022004
• Physics and Electronics • Previous Articles Next Articles
Received:
2020-03-09
Online:
2021-01-25
Published:
2021-01-28
Contact:
Xun XUE
E-mail:KatherineLi95@163.com;xxue@phy.ecnu.edu
CLC Number:
Jing LI, Xun XUE. Spatial flatness and large-scale Lorentz violation[J]. Journal of East China Normal University(Natural Science), 2021, 2021(1): 67-81.
Table 1
The value of ${\varLambda _{\max}}$ when $K = + 1$ "
情形 | | | | |
CaseA1 | 0.0008Λ | 0.0007Λ | 0.0006Λ | 0.0007Λ |
CaseA2 | 0.0012Λ | 0.0014Λ | 0.0015Λ | 0.0015Λ |
CaseB1 | 0.0008Λ | 0.0007Λ | 0.0007Λ | 0.0006Λ |
CaseB2 | 0.0012Λ | 0.0014Λ | 0.0015Λ | 0.0016Λ |
CaseC1(w0 = –1) | 0.0008Λ | 0.0007Λ | 0.0007Λ | 0.0006Λ |
CaseC2(w0 = –1) | 0.0012Λ | 0.0015Λ | 0.0015Λ | 0.0016Λ |
CaseC1(w0 = | 0.0008Λ | 0.0007Λ | 0.0007Λ | 0.0006Λ |
CaseC2(w0 = | 0.0013Λ | 0.0016Λ | 0.0017Λ | 0.0018Λ |
CaseC1(w0 = | 0.0008Λ | 0.0007Λ | 0.0007Λ | 0.0006Λ |
CaseC2(w0 = | 0.0013Λ | 0.0016Λ | 0.0018Λ | 0.0019Λ |
CaseC1(w0 = | 0.0008Λ | 0.0007Λ | 0.0006Λ | 0.0006Λ |
CaseC2(w0 = | 0.0014Λ | 0.0018Λ | 0.0020 | 0.0022Λ |
CaseC1(w0 = | 0.0008Λ | 0.0006Λ | 0.0006Λ | 0.0006Λ |
CaseC2(w0 = | 0.0025Λ | 0.0046Λ | 0.0056Λ | 0.0062Λ |
Table 2
The value of ${\varLambda _{\max}}$ when $K = - 1$ "
情形 | | | | | |
CaseA1 | 0.0004Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ |
CaseA2 | 0.0023Λ | 0.002Λ | 0.0019Λ | 0.0018Λ | 0.0018Λ |
CaseB1 | 0.0004Λ | 0.0004Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ |
CaseB2 | 0.0023Λ | 0.002Λ | 0.0019Λ | 0.0019Λ | 0.0018Λ |
CaseC1(w0 = –1) | 0.0003Λ | 0.0004Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ |
CaseC2(w0 = –1) | 0.015Λ | 0.0027Λ | 0.0023Λ | 0.0021Λ | 0.002Λ |
CaseC1(w0 = | 0.0003Λ | 0.0004Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ |
CaseC2(w0 = | 0.0033Λ | 0.0033Λ | 0.0026Λ | 0.0024Λ | 0.0023Λ |
CaseC1(w0 = | 0.0003Λ | 0.0004Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ |
CaseC2(w0 = | 0.0032Λ | 0.0032Λ | 0.0032Λ | 0.0028Λ | 0.0026Λ |
CaseC1(w0 = | 0.0003Λ | 0.0004Λ | 0.0004Λ | 0.0004Λ | 0.0005Λ |
CaseC2(w0 = | 0.0185Λ | 0.0091Λ | 0.0054Λ | 0.0037Λ | 0.0031Λ |
CaseC1(w0 = | 0.001Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ | 0.0005Λ |
CaseC2(w0 = | 0.0147Λ | 0.0119Λ | 0.0105Λ | 0.0097Λ | 0.0092Λ |
Table 3
The value of Λ0-crit when $K = + 1$ "
情形 | | | | |
CaseA1 | –0.072Λ | –0.064Λ | –0.059Λ | 0.05Λ |
CaseA2 | –0.14Λ | –0.159Λ | –0.167Λ | –0.18Λ |
CaseB1 | –0.094Λ | –0.083Λ | –0.078Λ | –0.066Λ |
CaseB2 | –0.154Λ | –0.176Λ | –0.187Λ | –0.2144Λ |
CaseC1(w0 = –1) | 0Λ | 0Λ | 0Λ | 0Λ |
CaseC2(w0 = –1) | 0Λ | 0Λ | 0Λ | 0Λ |
CaseC1(w0 = | 0.162Λ | 0.152Λ | 0.146Λ | 0.119Λ |
CaseC2(w0 = | 0.09Λ | 0.086Λ | 0.083Λ | 0.075Λ |
CaseC1(w0 = | ||||
CaseC2(w0 = | 0.173Λ | 0.164Λ | 0.164Λ | 0.152Λ |
CaseC1(w0 = | ||||
CaseC2(w0 = | 0.246Λ | 0.235Λ | 0.228Λ | 0.225Λ |
CaseC1(w0 = | ||||
CaseC2(w0 = | 0.354Λ | 0.368Λ | 0.375Λ | 0.397Λ |
Table 4
The value of Λ0-crit when $K = - 1$ "
情形 | | | | | | |
CaseA1 | –0.023Λ | –0.033Λ | –0.038Λ | –0.041Λ | –0.044Λ | –0.05Λ |
CaseA2 | –0.214Λ | –0.208Λ | –0.203Λ | –0.198Λ | –0.195Λ | –0.187Λ |
CaseB1 | –0.03Λ | –0.042Λ | –0.049Λ | –0.053Λ | –0.056Λ | –0.066Λ |
CaseB2 | –0.284Λ | –0.262Λ | –0.248Λ | –0.239Λ | –0.233Λ | –0.214Λ |
CaseC1(w0 = –1) | 0Λ | 0Λ | 0Λ | 0Λ | 0Λ | 0Λ |
CaseC2(w0 = –1) | 0Λ | 0Λ | 0Λ | 0Λ | 0Λ | 0Λ |
CaseC1(w0 = | 0.05Λ | 0.086Λ | 0.102Λ | 0.107Λ | 0.115Λ | 0.119Λ |
CaseC2(w0 = | 0.03Λ | 0.052Λ | 0.059Λ | 0.064Λ | 0.075Λ | |
CaseC1(w0 = | ||||||
CaseC2(w0 = | 0.079Λ | 0.104Λ | 0.118Λ | 0.131Λ | 0.152Λ | |
CaseC1(w0 = | ||||||
CaseC2(w0 = | 0.03Λ | 0.15Λ | 0.173Λ | 0.189Λ | 0.198Λ | 0.225Λ |
CaseC1(w0 = | ||||||
CaseC2(w0 = | 0.203Λ | 0.25Λ | 0.278Λ | 0.309Λ | 0.343Λ | 0.397Λ |
1 | AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results(VI): Cosmological parameters [EB/OL]. (2019-09-20)[2020-04-01]. https://arxiv.org/abs/1807.06209. |
2 |
ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Astronomy and Astrophysics, Planck 2013 results(XVI): Cosmological parameters. 2014, 571, A16.
doi: 10.1051/0004-6361/201321591 |
3 |
RIESS A G, CASERTANO S, YUAN W. The Astrophysical Journal, Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: Implications for the Hubble constant. 2018, 861 (2): 126.
doi: 10.3847/1538-4357/aac82e |
4 |
VIREY J M, TALON-ESMIEU D, EALET A, et al. Journal of Cosmology and Astroparticle Physics, On the determination of curvature and dynamical dark energy. 2008, (12): 008.
doi: 10.1088/1475-7516/2008/12/008 |
5 |
WANG Y, MUKHERJEE P. Physical Review D, Observational constraints on dark energy and cosmic curvature. 2007, 76 (10): 103533.
doi: 10.1103/PhysRevD.76.103533 |
6 |
CLARKSON C, CORTES M, BASSETT B. Journal of Cosmology and Astroparticle Physics, Dynamical dark energy or simply cosmic curvature?. 2007, (8): 11.
doi: 10.1088/1475-7516/2007/08/011 |
7 |
REST A, SCOLNIC D, FOLEY R J, et al. The Astrophysical Journal, Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey. 2014, 795 (1): 44.
doi: 10.1088/0004-637X/795/1/44 |
8 |
KUMAR S. Physical Review D, Consistency of the nonflat ΛCDM model with the new result from BOSS. 2015, 92 (10): 103512.
doi: 10.1103/PhysRevD.92.103512 |
9 |
HUANG Q G, LI M. Journal of Cosmology and Astroparticle Physics, The holographic dark energy in a non-flat universe. 2004, 2004 (8): 13.
doi: 10.1088/1475-7516/2004/08/013 |
10 | SHEN J, XUE X. Large-scale Lorentz violation gravity and dark energy [EB/OL]. (2018-10-13)[2020-04-01]. https://arxiv.org/abs/1802.03502. |
11 | ZHAI H, SHEN J, XUE X. The effective quintessence from string landscape [EB/OL]. (2019-07-01)[2020-04-01]. https://arxiv.org/abs/1906.11860. |
12 | LI Q, LI J, ZHOU Y X, et al. The effective potential originating from swampland and the non-trivial Brans-Dicke coupling [EB/OL]. (2020-03-20)[2020-04-01]. https://arxiv.org/abs/2003.09121. |
13 |
SHANKS T, HOGARTH L, METCALFE N. Monthly Notices of the Royal Astronomical Society: Letters, Gaia Cepheid parallaxes and ‘Local Hole’relieve H0 tension . 2019, 484 (1): L64- L68.
doi: 10.1093/mnrasl/sly239 |
14 | RIESS A G, CASERTANO S, KENWORTHY D A, et al. Seven problems with the claims related to the Hubble tension in arXiv: 1810.02595 [EB/OL]. (2018-10-08)[2020-04-01]. https://arxiv.org/abs/1810.03526. |
15 |
VON MARTTENS R, MARRA V, CASARINI L, et al. Physical Review D, Null test for interactions in the dark sector. 2019, 99 (4): 043521.
doi: 10.1103/PhysRevD.99.043521 |
16 |
BENGALY C A P, ANDRADE U, ALCANIZ J S. The European Physical Journal C, How does an incomplete sky coverage affect the Hubble Constant variance?. 2019, 79 (9): 768.
doi: 10.1140/epjc/s10052-019-7284-4 |
17 |
ABBOTT B P, The LIGO Scientific Collaboration, The Virgo Collaboration, et al. Physical Review Letters, GW170817: Observation of gravitational waves from a binary neutron star inspiral. 2017, 119 (16): 161101.
doi: 10.1103/PhysRevLett.119.161101 |
18 |
The LIGO Scientific Collaboration, The Virgo Collaboration, The 1M2H Collaboration, et al. Nature, A gravitational-wave standard siren measurement of the Hubble constant. 2017, 551, 85- 88.
doi: 10.1038/nature24471 |
19 |
FISHBACH M, GRAY R, HERNANDEZ I M, et al. The Astrophysical Journal Letters, A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart. 2019, 871 (1): L13.
doi: 10.3847/2041-8213/aaf96e |
20 |
MORTLOCK D J, FEENEY S M, PEIRIS H V, et al. Physical Review D, Unbiased Hubble constant estimation from binary neutron star mergers. 2019, 100 (10): 103523.
doi: 10.1103/PhysRevD.100.103523 |
21 |
FEENEY S M, PEIRIS H V, WILLIAMSON A R, et al. Physical Review Letters, Prospects for resolving the Hubble constant tension with standard sirens. 2019, 122 (6): 061105.
doi: 10.1103/PhysRevLett.122.061105 |
22 |
HOTOKEZAKA K, NAKAR E, GOTTLIEB O, et al. Nature Astronomy, A Hubble constant measurement from superluminal motion of the jet in GW170817. 2019, (3): 940- 944.
doi: 10.1038/s41550-019-0820-1 |
23 |
CHEN H Y, FISHBACH M, HOLZ D E. Nature, A two per cent Hubble constant measurement from standard sirens within five years.. 2018, 562, 545- 547.
doi: 10.1038/s41586-018-0606-0 |
24 |
VITALE S, CHEN H Y. Physical Review Letters, Measuring the Hubble constant with neutron star black hole mergers. 2018, 121 (2): 021303.
doi: 10.1103/PhysRevLett.121.021303 |
25 |
MIAO H T, HUANG Z Q. The Astrophysical Journal, The H0 tension in non-flat QCDM cosmology . 2018, 868 (1): 20.
doi: 10.3847/1538-4357/aae523 |
26 |
BOLEJKO K. Physical Review D, Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant. 2018, 97 (10): 103529.
doi: 10.1103/PhysRevD.97.103529 |
[1] | ZHAI Hanyu, XUE Xun. Lorentz symmetry violation and accelerated expansion of the universe [J]. Journal of East China Normal University(Natural Science), 2020, 2020(2): 83-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||