Journal of East China Normal University(Natural Science) ›› 2022, Vol. 2022 ›› Issue (1): 31-42.doi: 10.3969/j.issn.1000-5641.2022.01.005
• Phisics and Electronic Science • Previous Articles Next Articles
Jianan CHEN1, Zhipeng LI1, Yanrong JIANG1, Zhubin HU1,2, Haitao SUN1,3,*(), Zhenrong SUN1,3,*()
Received:
2021-03-24
Online:
2022-01-25
Published:
2022-01-18
Contact:
Haitao SUN,Zhenrong SUN
E-mail:htsun@phy.ecnu.edu.cn;zrsun@phy.ecnu.edu.cn
CLC Number:
Jianan CHEN, Zhipeng LI, Yanrong JIANG, Zhubin HU, Haitao SUN, Zhenrong SUN. Study of electronic structures and the micro-solvation effect of SO3– and HSO3– in atmospheric aerosols[J]. Journal of East China Normal University(Natural Science), 2022, 2022(1): 31-42.
Table 2
Calculated ionization energy and ionization intensity based on the equilibrium structure of SO3– and HSO3–"
末态 | SO3– | HSO3– | |||
| | | | ||
0 | 3.7324 | 0.9605 | 3.8994 | 0.9538 | |
1 | 5.2993 | 0.4698 | 3.8994 | 0.8537 | |
2 | 6.6217 | 0.4561 | 5.2923 | 0.6892 | |
3 | 6.6217 | 0.4561 | 5.7534 | 0.8457 | |
4 | 7.7595 | 0.4014 | 6.3672 | 0.7992 | |
5 | 7.7596 | 0.4014 |
Table 4
Energy decomposition of HOSO2–·(H2O)n (n = 1 ~ 5) based on SAPT kcal·mol–1"
络合物 | Etot | EB/n | Eelst | Edis | Eind | Eexch |
HOSO2–·H2O | –17.50 | –17.5 | –26.95 (65.8%) | –7.86 (19.2%) | –6.15 (15.0%) | 23.46 |
HOSO2–·(H2O)2 | –31.11 | –15.6 | –47.83 (60.5%) | –13.39 (16.9%) | –17.85 (22.6%) | 47.96 |
HOSO2–·(H2O)3 | –45.82 | –15.3 | –65.81 (62.1%) | –18.50 (17.5%) | –21.60 (20.4%) | 60.08 |
HOSO2–·(H2O)4 | –54.39 | –13.6 | –79.68 (63.4%) | –22.25 (17.7%) | –23.77 (18.9%) | 71.31 |
HOSO2–·(H2O)5 | –66.75 | –13.4 | –89.84 (61.3%) | –25.23 (17.2%) | –31.39 (21.4%) | 79.70 |
1 | ETHERINGTON J R, COLE J A, FERGUSON S J. The nitrogen and sulphur cycles. Journal of Ecology, 1988, 76 (3): 904. |
2 |
MARCO J F, AGUDELO A C, GANCEDO J R, et al. Surface spectroscopic study of the behaviour of a thin TiN layer as protective coating of iron against corrosion by humid SO2– aggressive environments . Surface and Interface Analysis, 1998, 26 (9): 667- 673.
doi: 10.1002/(SICI)1096-9918(199808)26:9<667::AID-SIA413>3.0.CO;2-0 |
3 | BRüHL C, LELIEVELD J, HöPFNER M, et al. Stratospheric SO2 and sulphate aerosol, model simulations and satellite observations . Atmospheric Chemistry & Physics Discussions, 2013, 13 (4): 11395- 11425. |
4 |
KAIHO K, KAJIWARA Y, NAKANO T, et al. End-permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 2001, 29 (9): 815.
doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2 |
5 | 王明康, 刘小红. 积云中硫酸盐形成机制的研究. 气象科学, 1990, 10 (2): 157- 165. |
6 |
LIN M, ZHANG X, LI M, et al. Five-S-isotope evidence of two distinct mass-independent sulfur isotope effects and implications for the modern and archean atmospheres. Proceedings of the National Academy of Sciences, 2018, 115 (34): 8541.
doi: 10.1073/pnas.1803420115 |
7 |
KOLB C E, JAYNE J T, WORSNOP D R, et al. Gas phase reaction of sulfur trioxide with water vapor. Journal of the American Chemical Society, 1994, 116 (22): 10314- 10315.
doi: 10.1021/ja00101a067 |
8 |
JAYNE J T, PSCHL U, CHEN Y M, et al. Pressure and temperature dependence of the gas-phase reaction of SO3 with H2O and the heterogeneous reaction of SO3 with H2O/H2SO4 surfaces . The Journal of Physical Chemistry A, 1997, 101 (51): 10000- 10011.
doi: 10.1021/jp972549z |
9 |
LOVEJOY E R, HANSON D R, HUEY L G. Kinetics and products of the gas-phase reaction of SO3 with water . The Journal of Physical Chemistry, 1996, 100 (51): 19911- 19916.
doi: 10.1021/jp962414d |
10 |
POMMERENING C A, BACHRACH S M, SUNDERLIN L S. Addition of protonated water to SO3. The Journal of Physical Chemistry A, 1999, 103 (9): 1214- 1220.
doi: 10.1021/jp984104w |
11 |
KOEVOETS R A, VERSTEEGEN R M, KOOIJMAN H, et al. Molecular recognition in a thermoplastic elastomer. Journal of the American Chemical Society, 2005, 127 (9): 2999- 3003.
doi: 10.1021/ja0451160 |
12 |
MOROKUMA K, MUGURUMA C. Ab initio molecular orbital study of the mechanism of the gas phase reaction SO3 + H2O: Importance of the second water molecule . Journal of the American Chemical Society, 1994, 116 (22): 10316- 10317.
doi: 10.1021/ja00101a068 |
13 |
TOWNSEND T M, ALLANIC A, NOONAN C, et al. Characterization of sulfurous acid, sulfite, and bisulfite aerosol systems. The Journal of Physical Chemistry A, 2012, 116 (16): 4035- 4046.
doi: 10.1021/jp212120h |
14 |
VOEGELE A F, TAUTERMANN C S, RAUCH C, et al. On the formation of the sulfonate ion from hydrated sulfur dioxide. The Journal of Physical Chemistry A, 2004, 108 (17): 3859- 3864.
doi: 10.1021/jp0377578 |
15 |
MISIEWICZ J P, MOORE K B, FRANKE P R, et al. Sulfurous and sulfonic acids: predicting the infrared spectrum and setting the surface straight. The Journal of Chemical Physics, 2020, 152 (2): 024302.
doi: 10.1063/1.5133954 |
16 | RISBERG E D, ERIKSSON L, MINK J, et al. Sulfur X-ray absorption and vibrational spectroscopic study of sulfur dioxide, sulfite, and sulfonate solutions and of the substituted sulfonate ions X3CSO3–(X = H, Cl, F) . Inorganic Chemistry, 2009, 46 (20): 8332- 8348. |
17 |
HORNER D A, CONNICK R E. Equilibrium quotient for the isomerization of bisulfite ion from HSO3– to SO3H–. Inorganic Chemistry, 1986, 25 (14): 2414- 2417.
doi: 10.1021/ic00234a026 |
18 |
BROWN R E, BARBER F. Ab initio studies of the thermochemistry of the bisulfite and the sulfonate ions and related compounds. The Journal of Physical Chemistry A, 1995, 99 (20): 8071- 8075.
doi: 10.1021/j100020a034 |
19 |
VCHIRAWONGKWIN V, PORNPIGANON C, KRITAYAKORNUPONG C, et al. The stability of bisulfite and sulfonate ions in aqueous solution characterized by hydration structure and dynamics. The Journal of Physical Chemistry B, 2012, 116 (37): 11498- 11507.
doi: 10.1021/jp305648e |
20 |
HAYON E, TREININ A, WILF J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2–, SO3–, SO4–, and SO5– radicals . Journal of the American Chemical Society, 1972, 94 (1): 47- 57.
doi: 10.1021/ja00756a009 |
21 |
DOBRIN S, BOO B H, ALCONCEL L S, et al. Photoelectron spectroscopy of SO3– at 355 and 266 nm . The Journal of Physical Chemistry A, 2000, 104 (46): 10695- 10700.
doi: 10.1021/jp0025680 |
22 |
YANG J, LI L, WANG S, et al. Unraveling a new chemical mechanism of missing sulfate formation in aerosol haze: Gaseous NO2 with aqueous HSO3–/SO32–. Journal of the American Chemical Society, 2019, 141 (49): 19312- 19320.
doi: 10.1021/jacs.9b08503 |
23 |
WANG X B. Cluster model studies of anion and molecular specificities via electrospray ionization photoelectron spectroscopy. The Journal of Physical Chemistry A, 2017, 121 (7): 1389- 1401.
doi: 10.1021/acs.jpca.6b09784 |
24 |
WANG L S, WANG X B. Probing free multiply charged anions using photodetachment photoelectron spectroscopy. The Journal of Physical Chemistry A, 2000, 104 (10): 1978- 1990.
doi: 10.1021/jp9940093 |
25 |
WANG L S, DING C F, WANG X B, et al. Photodetachment photoelectron spectroscopy of multiply charged anions using electrospray ionization. Review of Scientific Instruments, 1999, 70 (4): 1957- 1966.
doi: 10.1063/1.1149694 |
26 |
WANG L S. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions. The Journal of Chemical Physics, 2015, 143 (4): 040901.
doi: 10.1063/1.4927086 |
27 | GUN J, MODESTOV A, KAMYSHNY A, et al. Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions. Microchimica Acta, 2004, 146 (3): 229- 237. |
28 |
MANISALI I, CHEN D D Y, SCHNEIDER B B. Electrospray ionization source geometry for mass spectrometry: Past, present, and future. Trends in Analytical Chemistry, 2006, 25 (3): 243- 256.
doi: 10.1016/j.trac.2005.07.007 |
29 |
BRUINS A P. Mechanistic aspects of electrospray ionization. Journal of Chromatography A, 1998, 794 (1-2): 345- 357.
doi: 10.1016/S0021-9673(97)01110-2 |
30 | LU T. Molclus Program [EB/OL]. (2021-11-23)[2021-12-15]. http://www.keinsci.com/research/molclus.html. |
31 |
BANNWARTH C, EHLERT S, GRIMME S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Journal of Chemical Theory and Computation, 2019, 15 (3): 1652- 1671.
doi: 10.1021/acs.jctc.8b01176 |
32 | FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16: Rev.A.03[CP]. Wallingford, CT: Gaussian Inc, 2016. |
33 |
BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. The Journal of Chemical Physics, 1993, 98 (7): 5648- 5652.
doi: 10.1063/1.464913 |
34 |
HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 1973, 28 (3): 213- 222.
doi: 10.1007/BF00533485 |
35 |
DITCHFIE R, HEHRE W J, POPLE J J A. Self-consistent molecular-orbital methods. Ⅸ. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 1971, 54 (2): 724- 728.
doi: 10.1063/1.1674902 |
36 |
HEHRE W, DITCHFIELD R, POPLE J A. Self-consistent molecular orbital methods. Ⅻ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 1972, 56 (5): 2257- 2261.
doi: 10.1063/1.1677527 |
37 |
YANG B, RODGERS M T. Alkali metal cation binding affinities of cytosine in the gas phase: revisited. Physical Chemistry Chemical Physics, 2014, 16 (30): 16110- 16120.
doi: 10.1039/C4CP01128G |
38 |
SILVERSTONE H, SINANOĞLU O. Many-electron theory of nonclosed-shell atoms and molecules. I. Orbital wavefunction and perturbation theory. The Journal of Chemical Physics, 1966, 44 (5): 1899- 1907.
doi: 10.1063/1.1726959 |
39 |
WOON D, DUNNING T. Gaussian basis sets for use in correlated molecular calculations. Ⅲ. The atoms aluminum through argon. The Journal of Chemical Physics, 1993, 98, 1358- 1371.
doi: 10.1063/1.464303 |
40 |
PURVIS G, BARTLETT R. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, 1982, 76 (4): 1910- 1918.
doi: 10.1063/1.443164 |
41 |
ARBELO-GONZÁLEZ W, CRESPO-OTERO R, BARBATTI M. Steady and time-resolved photoelectron spectra based on nuclear ensembles. Journal of Chemical Theory and Computation, 2016, 12 (10): 5037- 5049.
doi: 10.1021/acs.jctc.6b00704 |
42 |
KOSSOSKI F, BARBATTI M. Nuclear ensemble approach with importance sampling. Journal of Chemical Theory and Computation, 2018, 14 (6): 3173- 3183.
doi: 10.1021/acs.jctc.8b00059 |
43 |
MELANIA O C, KRYLOV A I. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples. The Journal of Chemical Physics, 2007, 127 (23): 234106.
doi: 10.1063/1.2805393 |
44 |
BARBATTI M, RUCKENBAUER M, PLASSER F, et al. Newton-X: A surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4 (1): 26- 33.
doi: 10.1002/wcms.1158 |
45 |
TOZER D, HANDY N. Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. The Journal of Chemical Physics, 1998, 109, 10180- 10189.
doi: 10.1063/1.477711 |
46 |
QIN Z, HOU G L, YANG Z, et al. Negative ion photoelectron spectra of ISO3–, IS2O3–, and IS2O4– intermediates formed in interfacial reactions of ozone and iodide/sulfite aqueous microdroplets . The Journal of Chemical Physics, 2016, 145 (21): 214310.
doi: 10.1063/1.4969076 |
47 |
LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 2012, 33 (5): 580- 592.
doi: 10.1002/jcc.22885 |
48 |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996, 14 (1): 33- 38.
doi: 10.1016/0263-7855(96)00018-5 |
49 |
TURNEY J M, SIMMONETT A C, PARRISH R M, et al. PSI4: An open-source ab initio electronic structure program. WIRES: Computational Molecular Science, 2012, 2 (4): 556.
doi: 10.1002/wcms.93 |
50 |
DUNNING T H. Gaussian basis sets for use in correlated molecular calculations. Ⅰ. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 1989, 90 (2): 1007- 1023.
doi: 10.1063/1.456153 |
[1] | WANG Qianqian, ZHAO Zhenjie, LI Xin, XIE Wenhui. Atomic distortion in CrN: A first-principle investigation [J]. Journal of East China Normal University(Natural Science), 2020, 2020(1): 58-66. |
[2] | XIE Wei-jia, WANG Qian-qian, XIE Wen-hui. A first principle investigation of organic-inorganic hybrid peroviskite (C4H9NH3)2PbBr4 [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(2): 122-127. |
[3] | SHEN Yu-hao, TANG Zheng, PENG Wei. A negatively charged VSiON center for implementation as qubit [J]. Journal of East China Normal University(Natural Sc, 2017, 2017(2): 97-106. |
[4] | ZHU Min;HAN Jing-mei;XIE Wen-hui. First-principle investigation of Al2O3 monolayer covered on SiO2 [J]. Journal of East China Normal University(Natural Sc, 2011, 2011(2): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||