1 |
RAZA A, CHRYSOGELOS P, ANADIOTIS A C, et al. Adaptive HTAP through elastic resource scheduling [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020: 2043-2054.
|
2 |
PSAROUDAKIS I, WOLF F, MAY N, et al. Scaling up mixed workloads: A battle of data freshness, flexibility, and scheduling [C]// Proceedings of the Technology Conference on Performance Evaluation and Benchmarking. 2014: 97-112.
|
3 |
KANTER J M, VEERAMACHANENI K. Deep feature synthesis: Towards automating data science endeavors [C]// Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics. 2015: 15652837.
|
4 |
LUO Y, WANG M, ZHOU H, et al. Autocross: Automatic feature crossing for tabular data in real-world applications [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1936-1945.
|
5 |
LAMH T, THIEBAUT J M, SINN M, et al. One button machine for automating feature engineering in relational databases [EB/OL]. (2017-06-01)[2022-06-12]. https://arxiv.org/pdf/1706.00327.pdf.
|
6 |
孙家博. HTAP系统中的并行日志回放优化 [D]. 上海: 华东师范大学, 2022.
|
7 |
MAKRESHANSKI D, GICEVA J, BARTHELS C, et al. BatchDB: Efficient isolated execution of hybrid OLTP + OLAP workloads for interactive applications [C]// Proceedings of the 2017 ACM International Conference on Management of Data. 2017: 37-50.
|
8 |
LAHIRI T, CHAVAN S, COLGAN M, et al. Oracle database in-memory: A dual format in-memory database [C]// Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. 2015: 1253-1258.
|
9 |
LARSON P Å, BIRKA A, HANSON E N, et al. Real-time analytical processing with SQL Server. Proceedings of the VLDB Endowment, 2015, 8 (12): 1740- 1751.
|
10 |
YANG J, RAE I, XU J, et al. F1 Lightning: HTAP as a service. Proceedings of the VLDB Endowment, 2020, 13 (12): 3313- 3325.
|
11 |
HUANG D X, LIU Q, CUI Q, et al. TiDB: A Raft-based HTAP database. Proceedings of the VLDB Endowment, 2020, 13 (12): 3072- 3084.
|
12 |
HONG C T, ZHOU D, YANG M, et al. KuaFu: Closing the parallelism gap in database replication [C]// Proceedings of the IEEE 29th International Conference on Data Engineering. 2013: 1186-1195.
|
13 |
XIA Y, YU X Y, PAVLO A, et al. Taurus: Lightweight parallel logging for in-memory database management systems (extended version) [EB/OL]. (2020-10-14)[2022-06-08]. https://arxiv.org/pdf/2010.06760.pdf.
|
14 |
QIN D, BROWNA D, GOEL A. Scalable replay-based replication for fast databases. Proceedings of the VLDB Endowment, 2017, 10 (13): 2025- 2036.
|