Journal of East China Normal University(Natural Science) ›› 2022, Vol. 2022 ›› Issue (5): 219-232.doi: 10.3969/j.issn.1000-5641.2022.05.018
• Spatio-temporal Data Analysis and Intelligent Optimization Theory for Logistics • Previous Articles
Yilin MA, Huiling TAO, Qiwen DONG, Ye WANG*()
Received:
2022-07-10
Online:
2022-09-25
Published:
2022-09-26
Contact:
Ye WANG
E-mail:ywang@dase.ecnu.edu.cn
CLC Number:
Yilin MA, Huiling TAO, Qiwen DONG, Ye WANG. Prediction of remaining useful life of aeroengines based on the Transformer with multi-feature fusion[J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 219-232.
Table 1
Description of sensors"
传感器编号 | 表示符号 | 具体描述 | 单位 | 传感器编号 | 表示符号 | 具体描述 | 单位 | |
1 | T2 | 风扇入口温度 | °R | 12 | phi | 燃料流量与Ps30的比率 | pps/psia | |
2 | T24 | LPC出口温度 | °R | 13 | NRF | 校正后的风扇速率 | rpm | |
3 | T30 | HPC出口温度 | °R | 14 | NRc | 校正后的核心速率 | rpm | |
4 | T50 | LPT出口温度 | °R | 15 | BPR | 涵道比 | ||
5 | P2 | 风扇入口压力 | psia | 16 | farB | 燃烧室燃料空气比 | ||
6 | P15 | 涵道压力 | psia | 17 | htBleed | 引气焓值 | ||
7 | P30 | HPC出口压力 | psia | 18 | Nf_dmd | 要求的风扇转速 | rpm | |
8 | Nf | 风扇物理转速 | rpm | 19 | PCNfR_dmd | 要求的校正后风扇转速 | rpm | |
9 | Nc | 核心机物理转速 | rpm | 20 | W31 | HPT冷却引气流量 | lbm/s | |
10 | epr | 发动机压力比率 | 21 | W32 | LPT冷却引气流量 | lbm/s | ||
11 | Ps30 | HPC出口静态压力 | psia |
1 | 任治潞. 从“重客轻货”到“客货并重”——《“十四五”航空物流发展专项规划》解读. 大飞机, 2022, (2): 56- 60. |
2 | 邹建军. 新发展格局下我国航空物流建设发展策略思考. 民航管理, 2020, (12): 16- 22. |
3 | 李小龙, 徐启明. 大运行理念下飞机维修成本精益管理. 民航管理, 2021, (10): 58- 63. |
4 | 周俊. 数据驱动的航空发动机剩余使用寿命预测方法研究 [D]. 南京: 南京航空航天大学, 2017. |
5 | 蔡光耀, 高晶, 苗学问. 航空发动机健康管理系统发展现状及其指标体系研究. 测控技术, 2016, 35 (4): 1-5. |
6 | PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws. Journal of Basic Engineering, 1963, 85 (4): 528- 533. |
7 | ZHAO F, TIAN Z, ZENG Y. Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method. IEEE Transactions on Reliability, 2013, 62 (1): 146- 159. |
8 | LEI Y, LI N, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery. IEEE Transactions on Reliability, 2016, 65 (3): 1314- 1326. |
9 | SUN J, ZUO H, WANG W, et al. Prognostics uncertainty reduction by fusing on-line monitoring data based on a state-space-based degradation model. Mechanical Systems and Signal Processing, 2014, 45 (2): 396- 407. |
10 | HUANG Z, XU Z, WANG W, et al. Remaining useful life prediction for a nonlinear heterogeneous wiener process model with an adaptive drift. IEEE Transactions on Reliability, 2015, 64 (2): 687- 700. |
11 | 朱磊, 左洪福, 蔡景. 基于Wiener过程的民用航空发动机性能可靠性预测. 航空动力学报, 2013, 28, (5): 1006-1012. |
12 | WANG H K, HUANG H Z, LI Y F, et al. Condition-based maintenance with scheduling threshold and maintenance threshold. IEEE Transactions on Reliability, 2016, 65 (2): 513- 524. |
13 | PENG W, LI Y F, YANG Y J, et al. Bivariate analysis of incomplete degradation observations based on inverse gaussian processes and copulas. IEEE Transactions on Reliability, 2016, 65 (2): 624- 639. |
14 | GARCÍA NIETO P J, GARCÍA-GONZALO E, SÁNCHEZ LASHERAS F, et al. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliability Engineering and System Safety, 2015, 138, 219- 231. |
15 | KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression. IEEE Transactions on Industrial Electronics, 2017, 64 (3): 2276- 2285. |
16 | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2017: 88-95. DOI: 10.1109/ICPHM.2017.7998311. |
17 | REN L, CHENG X J, WANG X K, et al. Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction. Future Generation Computer Systems, 2019, 94, 601- 609. |
18 | WANG J J, WEN G L, YANG S P, et al. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural network [C]// 2018 Prognostics and System Health Management Conference (PHM-Chongqing). IEEE, 2018: 1037-1042. DOI: 10.1109/PHM-Chongqing.2018.00184. |
19 | HU K, CHENG Y W, WU J, et al. Deep bidirectional recurrent neural networks ensemble for remaining useful life prediction of aircraft engine [J]. IEEE Transactions on Cybernetics. IEEE, 2021. DOI: 10.1109/TCYB.2021.3124838. |
20 | LI H, LI Y, WANG Z J, et al. Remaining useful life prediction of aero-engine based on PCA-LSTM [C]// 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO). IEEE, 2021: 63-66. |
21 | LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering and System Safety, 2018, 172, 1- 11. |
22 | LI R Z, CHU Z T, JIN W K, et al. Temporal convolutional network based regression approach for estimation of remaining useful life [C]// 2021 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2021. DOI: 10.1109/ICPHM51084.2021.9486528. |
23 | ZENG F C, LI Y M, JIANG Y H, et al. A deep attention residual neural network-based remaining useful life prediction of machinery. Measurement, 2021, 181, 109642. |
24 | ABDERREZEK S, BOUROUIS A. Convolutional autoencoder and bidirectional long short-term memory to estimate remaining useful life for condition based maintenance [C]// 2021 International Conference on Networking and Advanced Systems (ICNAS). IEEE, 2021. DOI: 10.1109/ICNAS53565.2021.9628958. |
25 | REMADNA I, TERRISSA S L, ZEMOURI R, et al. Leveraging the power of the combination of CNN and bi-directional LSTM networks for aircraft engine RUL estimation [C]// 2020 Prognostics and Health Management Conference (PHM-Besançon). IEEE, 2020: 116-121. DOI: 10.1109/PHM-Besancon49106.2020.00025. |
26 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 6000-6010. |
27 | MO Y, WU Q, LI X, et al. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. Journal of Intelligent Manufacturing, 2021, 32 (7): 1997- 2006. |
28 | ZHANG Z Z, SONG W, LI Q Q. Dual-aspect self-attention based on transformer for remaining useful life prediction [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505711. DOI: 10.1109/TIM.2022.3160561. |
29 | LIU L, WANG S, LIU D, et al. Entropy-based sensor selection for condition monitoring and prognostics of aircraft engine. Microelectronics Reliability, 2015, 55 (9/10): 2092- 2096. |
30 | SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// 2008 International Conference on Prognostics and Health Management. IEEE, 2008. DOI: 10.1109/PHM.2008.4711414. |
31 | ZHAO Z Q, LIANG B, WANG X Q, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning. Reliability Engineering and System Safety, 2017, 164, 74- 83. |
[1] | Zejie WANG, Chaomin SHEN, Chun ZHAO, Xinmei LIU, Jie CHEN. Recognition of classroom learning behaviors based on the fusion of human pose estimation and object detection [J]. Journal of East China Normal University(Natural Science), 2022, 2022(2): 55-66. |
[2] | Guofang ZHANG, Lili WEN, Meng WU, Tongyu LIU, Kuanyun ZHENG, Fuxing HUANG, Peisen YUAN. Anomaly detection of transformer loss data based on a robust random cut forest [J]. Journal of East China Normal University(Natural Science), 2021, 2021(6): 135-146. |
[3] | Bo LIU, Xiaodong BAI, Gengxin ZHANG, Jun SHEN, Jidong XIE, Laiding ZHAO, Tao HONG. Review of deep learning in cognitive radio [J]. Journal of East China Normal University(Natural Science), 2021, 2021(1): 36-52. |
[4] | ZHANG Xu, HUANG Dingjiang. Defect detection on aluminum surfaces based on deep learning [J]. Journal of East China Normal University(Natural Science), 2020, 2020(6): 105-114. |
[5] | WANG Junhao, LUO Yifeng. Enriching image descriptions by fusing fine-grained semantic features with a transformer [J]. Journal of East China Normal University(Natural Science), 2020, 2020(5): 56-67. |
[6] | HAN Chengcheng, LI Lei, LIU Tingting, GAO Ming. Approaches for semantic textual similarity [J]. Journal of East China Normal University(Natural Science), 2020, 2020(5): 95-112. |
[7] | LIU Heng-yu, ZHANG Tian-cheng, WU Pei-wen, YU Ge. A review of knowledge tracking [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 1-15. |
[8] | CHEN Yuan-zhe, KUANG Jun, LIU Ting-ting, GAO Ming, ZHOU Ao-ying. A survey on coreference resolution [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 16-35. |
[9] | YANG Kang, HANG Ding-jiang, GAO Ming. A review of machine reading comprehension for automatic QA [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 36-52. |
[10] | YANG Dong-ming, YANG Da-wei, GU Hang, HONG Dao-cheng, GAO Ming, WANG Ye. Research on knowledge point relationship extraction for elementary mathematics [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 53-65. |
[11] | YE Jian, ZHAO Hui. A public opinion analysis model based on Danmu data monitoring and sentiment classification [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(3): 86-100. |
[12] | YU Ruo-nan, HUANG Ding-jiang, DONG Qi-wen. Survey on scene text detection based on deep learning [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(5): 1-16. |
[13] | YUAN Pei-sen, ZHANG Yong, LI Mei-ling, GU Xing-jian. Research on trademark image retrieval based on deep Hashing [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(5): 172-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||