1 |
XIA R, GAO Y P, ZHU Y Q, et al.. An attention-based wide and deep CNN with dilated convolutions for detecting electricity theft considering imbalanced data. Electric Power Systems Research, 2023, 214 (A): 108886.
|
2 |
GLAUNER P, MEIRA J A, VALTCHEV P, et al.. The challenge of non-technical loss detection using artificial intelligence: A survey. International Journal of Computational Intelligence Systems, 2017, 10 (1): 760- 775.
|
3 |
BUZAU M M, TEJEDOR-AGUILERA J, CRUZ-ROMERO P, et al.. Detection of non-technical losses using smart meter data and supervised learning. IEEE Transactions on Smart Grid, 2018, 10 (3): 2661- 2670.
|
4 |
XIA X F, XIAO Y, LIANG W, et al.. Detection methods in smart meters for electricity thefts: A survey. Proceedings of the IEEE, 2022, 110 (2): 273- 319.
|
5 |
YATSKO V A.. Patterns of using the Z-score for text classification purposes . Automatic Documentation and Mathematical Linguistics, 2022, 56 (5): 245- 250.
|
6 |
周赣, 华济民, 李铭钧, 等.. 基于图转换和混合卷积神经网络的窃电检测方法. 电力系统自动化, 2022, 46 (19): 78- 86.
|
7 |
LI S, HAN Y H, YAO Y, et al. Electricity theft detection in power grids with deep learning and random forests[J]. Journal of Electrical and Computer Engineering, 2019: Article ID 4136874. DOI: 10.1155/2019/4136874.
|
8 |
李强, 张立梅, 白牧可.. 基于多元数据特征和改进随机森林的智能配电网异常数据辨识. 科学技术与工程, 2023, 23 (5): 2007- 2015.
|
9 |
ROUZBAHANI H M, KARIMIPOUR H, LEI L. An ensemble deep convolutional neural network model for electricity theft detection in smart grids[C]// 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020: 3637-3642.
|
10 |
徐扬, 张耀, 陈宇轩, 等.. 基于Bagging混合策略的多风电场稀疏向量自回归概率预测. 电力系统保护与控制, 2023, 51 (7): 95- 106.
|
11 |
谭庆康, 潘沛生.. 基于注意力机制的堆叠LSTM心电预测算法. 计算机技术与发展, 2023, 33 (1): 62- 67.
|
12 |
赵星宇, 吴泉军, 朱威.. 基于CEEMDAN和TCN-LSTM模型的短期电力负荷预测. 科学技术与工程, 2023, 23 (4): 1557- 1564.
|
13 |
CHEN W, SHI K.. Multi-scale attention convolutional neural network for time series classification. Neural Networks, 2021, 136 (2): 126- 140.
|
14 |
HASAN M N, TAMA R N, NAHID A A, et al.. Electricity theft detection in smart grid systems: A CNN-LSTM based approach. Energies, 2019, 12 (17): 3310- 3328.
|
15 |
简定辉, 李萍, 黄宇航.. 基于GA-VMD-ResNet-LSTM网络的短期电力负荷预测. 国外电子测量技术, 2022, 41 (10): 15- 22.
|
16 |
LI Y X, CAO W C, DROSSOS K, et al. Domestic activity clustering from audio via depthwise separable convolutional autoencoder network[C]// 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2022. DOI: 10.1109/MMSP55362.2022.9949512.
|
17 |
WU H X, HU T G, LIU Y, et al. TimesNet: Temporal 2D-variation modeling for general time series analysis [EB/OL]. (2023-04-12)[2023-05-11]. https://doi.org/10.48550/arXiv.2210.02186.
|
18 |
ZHENG Z B, YANG Y T, NIU X D, et al.. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics, 2018, 14 (4): 1606- 1615.
|
19 |
WANG Z G, OATES T. Imaging time-series to improve classification and imputation[C]// Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI’15). AAAI, 2015: 3939-3945.
|
20 |
赵晋斌, 张建平, 毛玲, 等.. 基于PSO-Soft attention双向LSTM算法的光伏发电量预测研究. 智慧电力, 2022, 50 (3): 1- 7.
|
21 |
皇甫晓瑛, 钱惠敏, 黄敏.. 结合注意力机制的深度神经网络综述. 计算机与现代化, 2023, (2): 40- 49.
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Red Hook, NY, USA: Curran Associates Inc., 2017: 6000-6010.
|
23 |
HEARST M A, DUMAIS S T, OSUNA E, et al.. Support vector machines. IEEE Intelligent Systems and Their Applications, 1998, 13 (4): 18- 28.
|