Journal of East China Normal University(Natural Science) ›› 2024, Vol. 2024 ›› Issue (6): 14-23.doi: 10.3969/j.issn.1000-5641.2024.06.002
• Research Methods, Techniques, and Progress • Previous Articles Next Articles
Cuizhu MA(), Wenjun ZHAO, Yufei CHEN, Huahong SHI()
Received:
2024-08-19
Accepted:
2024-10-15
Online:
2024-11-25
Published:
2024-11-29
Contact:
Huahong SHI
E-mail:cuizhu_ma@yeah.net;hhshi@des.ecnu.edu.cn
CLC Number:
Cuizhu MA, Wenjun ZHAO, Yufei CHEN, Huahong SHI. Advancements in bio-tracking and bio-imaging technologies for microplastics[J]. Journal of East China Normal University(Natural Science), 2024, 2024(6): 14-23.
Table 3
Advantages, disadvantages, and future development directions of different bio-tracking and imaging techniques"
生物示踪/成像技术 | 优点 | 缺点 | 未来发展方向 | |
生物示踪技术 | 染色法荧光标记 | 操作简便, 可视化效果好 | 存在假阳性和荧光不均匀 等问题 | 优化荧光标记方法, 提高其稳定性和特异性 |
金属标记 | 稳定性好, 检测灵敏度高 | 可能改变微塑料的物理性质 | 关注金属标记对微塑料性质的影响, 并开发密度更接近原始微塑料的 标记方法 | |
同位素标记 | 准确追踪微塑料的转化 和降解过程 | 制备和检测成本较高 | 拓展同位素标记在环境和生物体系中的应用, 并降低其成本 | |
分子探针法 荧光标记 | 特异性强, 灵敏度高 | 探针设计和合成较为复杂 | 开发针对不同类型微塑料的特异性探针, 并探索其在活体示踪中的应用 | |
生物成像技术 | 高光谱成像 | 样品无须预处理, 可快速检测 | 对仪器要求高, 小尺寸微塑料 检测困难 | 提高仪器分辨率,完善谱库建设, 以增强对小尺寸微塑料的检测能力 |
表面增强拉曼成像 | 灵敏度高, 可检测纳米级塑料 | 样品制备较为复杂 | 简化样品制备流程, 拓展其在复杂生物 样品中的应用 | |
偏振光成像 | 直观观察微塑料在生物 体内的分布 | 易受环境干扰 | 改进样品前处理方法, 提高检测的特异性 | |
生物体组织 透明化技术 | 可实现微塑料在生物 体内的三维成像 | 可能改变组织结构 | 开发更温和的透明化方法, 减少对组织结构的影响 |
1 | PANNETIER P, MORIN B, LE BIHANIC F, et al.. Environmental samples of microplastics induce significant toxic effects in fish larvae. Environment International, 2020, 134, 105047. |
2 | COLE M, LINDEQUE P, FILEMAN E, et al.. Microplastic ingestion by zooplankton. Environmental Science & Technology, 2013, 47 (12): 6646- 6655. |
3 | KARAKOLIS E G, NGUYEN B, YOU J B, et al.. Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science & Technology Letters, 2019, 6 (6): 334- 340. |
4 | KUNIS S, BERNHARDT K, HENSEL M.. Setting up a data management infrastructure for bioimaging. Biological Chemistry, 2023, 404 (5): 433- 439. |
5 | 欧毅超, 冯展鹏, 武广森, 等.. 6种光学透明化方法在大鼠脑组织块的透明效果比较. 中国比较医学杂志, 2018, 28 (4): 7- 14. |
6 | 马翠竹. 微塑料的生物示踪技术、体内外分布特征及其与生物的相互作用 [D]. 上海: 华东师范大学, 2024. |
7 | FENG X, YANG X, LI M, et al.. Production and method optimization of fluorescent polystyrene. Journal of Molecular Structure, 2021, 1243, 130746. |
8 | 汪雨, 刘丹丹, 张洁洁, 等.. 羧基聚苯乙烯荧光微球的制备及其溶胀机制. 功能材料, 2017, 48 (6): 6193- 6198. |
9 | VAN POMEREN M, BRUN N R, PEIJNENBURG W J G M, et al.. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquatic Toxicology, 2017, 190, 40- 45. |
10 | PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2018, 194: 185-194. |
11 | CATARINO A I, FRUTOS A, HENRY T B.. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Science of the Total Environment, 2019, 670, 915- 920. |
12 | VENEMAN W J, SPAINK H P, BRUN N R, et al.. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquatic Toxicology, 2017, 190, 112- 120. |
13 | LEE J J, KANG J, KIM C.. A low-cost TICT-based staining agent for identification of microplastics: Theoretical studies and simple, cost-effective smartphone-based fluorescence microscope application. Journal of Hazardous Materials, 2024, 465, 133168. |
14 | 白濛雨, 赵世烨, 彭谷雨, 等.. 城市污水处理过程中微塑料赋存特征. 中国环境科学, 2018, 38 (5): 1734- 1743. |
15 | RIBEIRO F, DUARTE A C, DA COSTA J P.. Staining methodologies for microplastics screening. TrAC Trends in Analytical Chemistry, 2024, 172, 117555. |
16 | 孙元, 邓新华, 边栋材.. PVA荧光纤维的制备及戊二醛缩醛化. 高分子材料科学与工程, 2008, 24 (4): 128- 131. |
17 | MA C, LI L, CHEN Q, et al.. Application of internal persistent fluorescent fibers in tracking microplastics in vivo processes in aquatic organisms. Journal of Hazardous Materials, 2021, 401, 123336. |
18 | SCHÜR C, RIST S, BAUN A, et al.. When fluorescence is not a particle: The tissue translocation of microplastics in Daphnia magna seems an artifact. Environmental Toxicology and Chemistry, 2019, 38 (7): 1495- 1503. |
19 | PIKUDA O, XU E G, BERK D, et al.. Toxicity assessments of micro- and nanoplastics can be confounded by preservatives in commercial formulations. Environmental Science & Technology Letters, 2019, 6 (1): 21- 25. |
20 | GAGNÉ F.. Detection of polystyrene nanoplastics in biological tissues with a fluorescent molecular rotor probe. Journal of Xenobiotics, 2019, 9 (1): 8147. |
21 | CAPONETTI V, MAVRIDI-PRINTEZI A, CINGOLANI M, et al.. A selective ratiometric fluorescent probe for no-wash detection of PVC microplastic. Polymers, 2021, 13 (10): 1588. |
22 | MITRANO D M, BELTZUNG A, FREHLAND S, et al.. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nature Nanotechnology, 2019, 14 (4): 362- 368. |
23 | TOPHINKE A H, JOSHI A, BAIER U, et al.. Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics. Environmental Pollution, 2022, 311, 119933. |
24 | REDONDO-HASSELERHARM P E, VINK G, MITRANO D M, et al.. Metal-doping of nanoplastics enables accurate assessment of uptake and effects on Gammarus pulex. Environmental Science: Nano, 2021, 8 (6): 1761- 1770. |
25 | DEL REAL A E P, MITRANO D M, CASTILLO-MICHEL H, et al.. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. Journal of Hazardous materials, 2022, 430, 128356. |
26 | CLARK N J, KHAN F R, MITRANO D M, et al.. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environment International, 2022, 159, 106994. |
27 | SCHMIEDGRUBER M, HUFENUS R, MITRANO D M.. Mechanistic understanding of microplastic fiber fate and sampling strategies: Synthesis and utility of metal doped polyester fibers. Water Research, 2019, 155, 423- 430. |
28 | WANG Y, BAI J, WEI Y, et al.. Tracking and imaging nano-plastics in fresh plant using cryogenic laser ablation inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, 2024, 465, 133029. |
29 | ZHANG J L, CHEN B W, LUO X, et al.. Eu(Ⅲ) complex-doped PMMA having fast radiation rate and high emission quantum efficiency. Chinese Chemical Letters, 2012, 23 (8): 945- 948. |
30 | ZHANG P, WANG Y, ZHAO X, et al.. Surface-enhanced Raman scattering labeled nanoplastic models for reliable bio-nano interaction investigations. Journal of Hazardous Materials, 2022, 425, 127959. |
31 | SANDER M, KOHLER H-P E, MCNEILL K.. Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature Nanotechnology, 2019, 14 (4): 301- 303. |
32 | AL-SID-CHEIKH M, ROWLAND S J, KAEGI R, et al.. Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies. Communications Materials, 2020, 1 (1): 97. |
33 | FRYDKJÆR C K, IVERSEN N, ROSLEV P.. Ingestion and egestion of microplastics by the Cladoceran Daphnia magna: Effects of regular and irregular shaped plastic and sorbed Phenanthrene. Bulletin of Environmental Contamination and Toxicology, 2017, 99 (6): 655- 661. |
34 | AL-SID-CHEIKH M, ROWLAND S J, STEVENSON K, et al.. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environmental Science & Technology, 2018, 52 (24): 14480- 14486. |
35 | WILSKE B, BAI M, LINDENSTRUTH B, et al.. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environmental Science and Pollution Research, 2014, 21 (16): 9453- 9460. |
36 | ZUMSTEIN M T, SCHINTLMEISTER A, NELSON T F, et al.. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances, 2018, 4 (7): eaas9024. |
37 | TIAN L, CHEN Q, JIANG W, et al.. A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air. Environmental Science: Nano, 2019, 6 (9): 2907- 2917. |
38 | HUANG W E, GRIFFITHS R I, THOMPSON I P, et al.. Raman microscopic analysis of single microbial cells. Analytical Chemistry, 2004, 76 (15): 4452- 4458. |
39 | RADAJEWSKI S, INESON P, PAREKH N R, et al.. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403 (6770): 646- 649. |
40 | ZHANG Y, WANG X, SHAN J, et al.. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish. Environmental Science & Technology, 2019, 53 (9): 5151- 5158. |
41 | ZHAO J, LAN R, WANG Z, et al.. Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nature Nanotechnology, 2023, 19, 406- 414. |
42 | MORTIMER M, GOGOS A, BARTOLOMé N, et al.. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environmental Science & Technology, 2014, 48 (15): 8760- 8767. |
43 | DAS A, TERRY L R, SANDERS S, et al.. Confocal surface-enhanced Raman imaging of the intestinal barrier crossing behavior of model nanoplastics in Daphnia Magna. Environmental Science & Technology, 2024, 58 (26): 11615- 11624. |
44 | XU G, CHENG H, JONES R, et al.. Surface-enhanced raman spectroscopy facilitates the detection of microplastics < 1 μm in the environment. Environmental Science & Technology, 2020, 54 (24): 15594- 15603. |
45 | 何宏辉, 曾楠, 廖然, 等.. 偏振光成像技术用于肿瘤病变检测的研究进展. 生物化学与生物物理进展, 2015, 42 (5): 15. |
46 | VON MOOS N, BURKHARDT-HOLM P, KOEHLER A.. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science & Technology, 2012, 46 (20): 11327- 11335. |
47 | 华正罡, 李良, 那军, 等.. 污泥堆放场地附近饲养生猪肠组织微塑料污染状况调查. 中国公共卫生, 2021, 37 (3): 6. |
48 | DELLA TORRE C, BERGAMI E, SALVATI A, et al.. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environmental Science & Technology, 2014, 48 (20): 12302- 12311. |
49 | MÖLLER J N, LÖDER M G J, LAFORSCH C.. Finding microplastics in soils: A review of analytical methods. Environmental Science & Technology, 2020, 54 (4): 2078- 2090. |
50 | ROCH S, BRINKER A.. Rapid and efficient method for the detection of microplastic in the gastrointestinal tract of fishes. Environmental Science & Technology, 2017, 51 (8): 4522- 4530. |
51 | HERMSEN E, MINTENIG S M, BESSELING E, et al.. Quality criteria for the analysis of microplastic in biota samples: A critical review. Environmental Science & Technology, 2018, 52 (18): 10230- 10240. |
52 | 邹亚丹, 徐擎擎, 张哿, 等.. 6种消解方法对荧光测定生物体内聚苯乙烯微塑料的影响. 环境科学, 2019, 40 (1): 496- 503. |
53 | 李敏, 王妃平, 陈子奇, 等.. 生物样品中微塑料的提取、定性与定量方法研究进展. 环境科学, 2024, |
54 | WAGNER J, WANG Z M, GHOSAL S, et al.. Nondestructive extraction and identification of microplastics from freshwater sport fish stomachs. Environmental Science & Technology, 2019, 53 (24): 14496- 14506. |
55 | ZHANG X, LIU R, YUAN Q, et al.. The precise diagnosis of cancer invasion/metastasis via 2D laser ablation mass mapping of metalloproteinase in primary cancer tissue. ACS Nano, 2018, 12 (11): 11139- 11151. |
56 | RICHARDSON D S, GUAN W, MATSUMOTO K, et al.. Tissue clearing. Nature Reviews Methods Primers, 2021, 1 (1): 84. |
57 | HAMA H, KUROKAWA H, KAWANO H, et al.. Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience, 2011, 14 (11): 1481- 1488. |
58 | CAIRÓS C, OLIVA-GARCíA R, SIVERIO G, et al.. Refractive index estimation in biological tissues by quantitative phase imaging. Optical Materials, 2023, 142, 114087. |
59 | RITSCHAR S, HÜFTLEIN F, SCHELL L-M, et al.. Taking advantage of transparency: A proof-of-principle for the analysis of the uptake of labeled microplastic particles by organisms of different functional feeding guilds using an adapted CUBIC protocol. Science of the Total Environment, 2022, 832, 154922. |
60 | MACAIRAN J-R, NGUYEN B, LI F, et al.. Tissue clearing to localize microplastics via three-dimensional imaging of whole organisms. Environmental Science & Technology, 2023, 57 (23): 8476- 8483. |
[1] | Yan LIU, Rong QIU, Xiaomu CAO, Yuqing LIANG, Xuelong CAO, Defu HE. Microplastic pollution in soil mediated by organic fertilizers derived from kitchen waste treatment in Shanghai [J]. Journal of East China Normal University(Natural Science), 2024, 2024(6): 114-123. |
[2] | Chunhua JIANG, Jinxu YI, Lixin ZHU, Kai LIU, Changxing ZONG, Daoji LI. Comparative study of the vertical distribution characteristics of microplastics and sampling methods for microplastics in the water column: A case study in the Jiulong River estuary [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 79-89. |
[3] | Daoji LI, Xuri DONG. Research progress of microplastics and attached organisms in marine environment [J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 1-7. |
[4] | LI Dao-ji, Zhu Li-xin, CHANG Si-yuan, ZHANG Feng, WANG Lu. State of marine microplastic pollution research and the limitations [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(3): 174-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||