ZHANG Chao. System of variational inclusions with ${(\emph{\textbf{H}},{\bm\phi})}$-$\bm\eta$-monotone operators in Banach spaces[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(1): 74-83.
{1}ZENG L C, GUU S M, YAO J C. Characterization of $H$-monotoneoperators with applications to variational inclusions[J]. ComputMath Appl, 2005, 50: 329-337.{2}LAN H Y, KIM J H, CHO Y J. On a new system of nonlinear $A$-monotonemulti-valued variational inclusions[J]. J Math Anal Appl, 2007, 327:481-493.{3}VERMA R U. $A$-monotonicity and applications to nonlinear inclusionproblems[J]. J Appl Math Stochastic Anal, 2004, 17(2): 193-195.{4}VERMA R U. Generalized nonlinear variational inclusion problemsinvolving $A$-monotone mappings[J]. Appl Math Lett, 2006, 19(9):960-963.{5}XIA F Q, HUANG N J. Variational inclusions with a general$H$-monotone operator in Banach spaces[J]. Comput Math Appl, 2007,54(1): 24-30.{6}DING X P, FENG H R. Algorithm for solving a new class of generalizednonlinear implicit qusi-variational inclusions in Banach spaces[J].Appl Math Comput, 2009, 208(2): 547-555.{7}FENG H R, DING X P. A new system of generalized nonlinearquasi-variational-like inclusions with $A$-monotone operators inBanach spaces[J]. J Comput Appl Math, 2009, 225(2): 365-373.{8}LOU J, HE X F, HE Z. Iterative methods for solving a system ofvariational inclusions involving $H$-$\eta$-monotone operators inBanach spaces[J]. Comput Math Appl, 2008, 55(7): 1832-1841.{9}DING X P, WANG Z B. System of set-valued mixedquasi-variational-like inclusions involving $H$-$\eta$-monotoneoperators in Banach spaces[J]. Appl Math Mech, 2009, 30(1): 1-12.{10}VERMA R U. Approximation solvability of a class of nonlinearset-valued inclusions involving $(A, \eta)$-monotone mappings[J]. JMath Anal Appl, 2008, 337(2): 969-975.{11}FANG Y P, HUANG N J, Thompson H B. A new system of variationalinclusions with $(H, \eta)$-monotone operators in Hilbert spaces[J].J Comput Math Appl, 2005, 49: 365-374.{12}FANG Y P, HUANG N J. $H$-monotone operator and systems ofvariational inclusions[J]. Commun Appl Nonlinear Anal, 2004, 11(1):93-101.{13}FANG Y P, HUANG N J. $H$-monotone operator and resolvent operatortechnique for variational inclusions[J]. Appl Math Comput, 2003,145(2-3): 795-803.{14}LUO X P, HUANG N J. A new class of variational inclusions with$B$-monotone operators in Banach spaces[J]. J Comput Appl Math,2010, 233(8): 1888-1896.{15}PETERSHYN W V. A characterization of strictly convexity of Banachspaces and other uses of duality mappings[J]. J Funct Anal, 1970, 6:282-291.{l6}LUO X P, HUANG N J. $(H, \phi)$-$\eta$-monotone operators in Banachspaces with an application to variational inclusions[J]. Appl MathComput, 2010, 216(4): 1131-1139.{17}HUANG N J, FANG Y P. A new class of general variational inclusionsinvolving maximal $\eta$-monotone mappings[J]. Publ Math Debrecen,2003, 62(1-2): 83-98.