Right-passage probabilities of $\emph{\textbf{SLE}}_{\bm {\kappa}}$ and critical percolation
LIANG Jing 1,2, LAN Shi-yi 2
1. Department of Mathematical and Computer Sciencs, Huainan Normal University, Huainan Anhui} 232001, China; 2. School of Mathematical and Computer Science, Guangxi University for Nationalities, Nanning 530006, China
{1}SMIRMOV S. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits[J]. C R Acad Sci Pariss$\acute{e}$r Math, 2001, 333: 239-244.{2}LAWLER G F, SCHRAMM O, WERNER W. Values of Brownian intersectionexponents $\mathbb{I}$: Half plane exponents[J]. Acta Math, 2001,187: 237-273.{3}WATTS G M T. A crossing probability for critical percolation in twodimensions[J]. J Phy A, 1996, 29(14): L363-L368.{4}SCHRAMM O. A percolation formula[J]. Electron Comm Probab, 2006, 6:115-120.{5}ROHDE S, SCHRAMM O. Basic properties of SLE[J]. Annals Math, 2005,161: 879-920.{6}GRUMMETT G. Percolation[M]. 2nd ed. Berlin: Springer-Verlag, 1999.{7}ERE$\acute{E}$LYI A, MAGNUS W, OBERHETTINGER F, et al. Highertranscendental functions[M]. New York: McGraw-Hill, 1953.{8}OBERHETTINGER F. Hypergeometric functions[M]// Handbook ofMathematics Functions with Formulas, Graphs, and MathematicalTables. 10th ed. New York: Wiley, 1972: 555-566.{9}LAWLER G F, WERNER W. Universality for conformally invariantintersection exponents[J]. J Eur Math Soc, 2000, 2(4): 291-328.{10}SCHRAMM O. Scaling limit of loop-erased random walks and uniformspanning trees[J]. Israel J Math, 2000, 118: 221-288.{11}AIZENMAN M, BURCHARD A. H$\ddot{o}$lder regularity and dimensionbounds for random curves[J]. Duke Math, 1999, 99(3): 419-453.